Internet Engineering Task Force (IETF) S. Mansfield, Ed.
Request for Comments: 9656 Ericsson Inc
Category: Standards Track J. Ahlberg
ISSN: 2070-1721 Ericsson AB
M. Ye
Huawei Technologies
X. Li
NEC Laboratories Europe
D. Spreafico
Nokia - IT
September 2024
A YANG Data Model for Microwave Topology
Abstract
This document defines a YANG data model to describe microwave and
millimeter-wave radio links in a network topology.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9656.
Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
1.1. Abbreviations
1.2. Tree Structure
1.3. Prefixes in Data Node Names
2. Microwave Topology YANG Data Model
2.1. YANG Tree
2.2. Relationship between Radio Links and Carriers
2.3. Relationship with Client Topology Model
2.4. Applicability of the Data Model for Traffic Engineering
(TE) Topologies
2.5. Microwave Topology YANG Module
3. Security Considerations
4. IANA Considerations
5. References
5.1. Normative References
5.2. Informative References
Appendix A. Microwave Topology Model with Base Topology Models
A.1. Instance Data for 2+0 Mode for a Bonded Configuration
A.2. Instance Data for 1+1 Mode for a Protected Configuration
Appendix B. Microwave Topology Model with Example Extensions
B.1. Instance Data for 2+0 Mode
B.2. Instance Data for Geolocation Information
Acknowledgments
Contributors
Authors' Addresses
1. Introduction
This document defines a YANG data model to describe microwave and
millimeter-wave radio links in a network topology (hereafter,
"microwave" is used to simplify the text). The YANG data model
describes radio links, supporting carrier(s), and the associated
carrier termination points [RFC8561]. A carrier is a single link
providing transport capacity over the air. It is typically defined
by its transmitting and receiving frequencies. A radio link provides
the transport capacity of the supporting carriers in aggregated and/
or protected configurations, which can be used to carry traffic on
higher topology layers such as Ethernet and Time-Division
Multiplexing (TDM). The model augments the YANG Data Model for
Traffic Engineering (TE) Topologies defined in [RFC8795], which is
based on A YANG Data Model for Network Topologies defined in
[RFC8345].
The microwave point-to-point radio technology provides connectivity
on Layer 0 or Layer 1 (L0/L1) over a radio link between two
termination points using one or several supporting carriers in
aggregated or protected configurations. That application of
microwave technology cannot be used to perform cross-connection or
switching of the traffic to create network connectivity across
multiple microwave radio links. Instead, a payload of traffic on
higher topology layers, normally Layer 2 (L2) Ethernet, is carried
over the microwave radio link. When the microwave radio link is
terminated at the endpoints, cross-connection and switching can be
performed on that higher layer creating connectivity across multiple
supporting microwave radio links.
The microwave topology model is expected to be used between a
Provisioning Network Controller (PNC) and a Multi-Domain Service
Coordinator (MDSC) [RFC8453]. Examples of use cases that can be
supported are:
1. Correlation between microwave radio links and the supported links
on higher topology layers (e.g., an L2 Ethernet topology). This
information can be used to understand how changes in the
performance/status of a microwave radio link affect traffic on
higher layers.
2. Propagation of relevant characteristics of a microwave radio
link, such as bandwidth, to higher topology layers, where it
could be used as a criterion when configuring and optimizing a
path for a connection or service through the network end to end.
3. Optimization of the microwave radio link configurations on a
network level, with the purpose to minimize overall interference
and/or maximize the overall capacity provided by the links.
1.1. Abbreviations
The following abbreviations are used in this document:
CTP: Carrier Termination Point
RLT: Radio Link Terminal
RLTP: Radio Link Termination Point
1.2. Tree Structure
A simplified graphical representation of the data model is used in
Section 2 of this document. The meaning of the symbols in these
diagrams is defined in [RFC8340].
1.3. Prefixes in Data Node Names
In this document, names of data nodes and other data model objects
are prefixed using the standard prefix associated with the
corresponding YANG imported modules, as shown in Table 1.
+==========+=======================+===========+
| Prefix | YANG Module | Reference |
+==========+=======================+===========+
| nw | ietf-network | [RFC8345] |
+----------+-----------------------+-----------+
| nt | ietf-network-topology | [RFC8345] |
+----------+-----------------------+-----------+
| mw-types | ietf-microwave-types | [RFC8561] |
+----------+-----------------------+-----------+
| tet | ietf-te-topology | [RFC8795] |
+----------+-----------------------+-----------+
Table 1: Prefixes for Imported YANG Modules
2. Microwave Topology YANG Data Model
2.1. YANG Tree
module: ietf-microwave-topology
augment /nw:networks/nw:network/nw:network-types/tet:te-topology:
+--rw mw-topology!
augment /nw:networks/nw:network/nw:node/tet:te
/tet:te-node-attributes:
+--rw mw-node!
augment /nw:networks/nw:network/nw:node/nt:termination-point
/tet:te:
+--rw mw-tp!
+--rw (mw-tp-option)?
+--:(microwave-rltp)
| +--rw microwave-rltp!
+--:(microwave-ctp)
+--rw microwave-ctp!
augment /nw:networks/nw:network/nt:link/tet:te
/tet:te-link-attributes:
+--rw mw-link!
+--rw (mw-link-option)
+--:(microwave-radio-link)
| +--rw microwave-radio-link!
| +--rw rlt-mode
| +--rw num-bonded-carriers uint32
| +--rw num-protecting-carriers uint32
+--:(microwave-carrier)
+--rw microwave-carrier!
+--rw tx-frequency? uint32
+--ro actual-rx-frequency? uint32
+--rw channel-separation? uint32
+--ro actual-tx-cm? identityref
+--ro actual-snir? decimal64
+--ro actual-transmitted-level? decimal64
augment /nw:networks/nw:network/nt:link/tet:te
/tet:te-link-attributes/tet:max-link-bandwidth
/tet:te-bandwidth:
+--ro mw-bandwidth? uint64
Figure 1: Microwave Topology Tree
2.2. Relationship between Radio Links and Carriers
A microwave radio link is always an aggregate of one or multiple
carriers in various configurations or modes. The supporting carriers
are identified by their termination points and are listed in the
container-bundled links as part of the te-link-config in the YANG
Data Model for Traffic Engineering (TE) Topologies [RFC8795] for a
radio-link. The exact configuration of the included carriers is
further specified in the rlt-mode container (1+0, 2+0, 1+1, etc.) for
the radio-link. Appendix A includes JSON examples of how such a
relationship can be modeled.
2.3. Relationship with Client Topology Model
A microwave radio link carries a payload of traffic on higher
topology layers, normally L2 Ethernet. The leafs supporting-network,
supporting-node, supporting-link, and supporting-termination-point in
the generic YANG module for Network Topologies [RFC8345] are expected
to be used to model a relationship or dependency from higher topology
layers to a supporting microwave radio link topology layer.
Appendix A includes JSON examples of an L2 Ethernet link transported
over one supporting microwave link.
2.4. Applicability of the Data Model for Traffic Engineering (TE)
Topologies
Since microwave is a point-to-point radio technology, a majority of
the leafs in the Data Model for Traffic Engineering (TE) Topologies
[RFC8795] augmented by the microwave topology model are not
applicable. Examples of which leafs are considered applicable can be
found in Appendices A and B in this document.
In the more specific context of the microwave-specific augmentations
of te-topology, the admin-status, and oper-status leafs (from te-
topology) are only applicable to microwave carriers (in the mw-link
tree); they are not applicable to microwave radio links. Radio links
are instead enabled or disabled in the constituent carriers.
Furthermore, the status leafs related to mw-tp can be used with
inter-domain links and when the status of only one side of the link
is known. However, since microwave is a point-to-point technology
where both ends normally belong to the same domain, it is not
expected to be applicable in normal cases.
2.5. Microwave Topology YANG Module
This module imports typedefs and modules from [RFC8345], [RFC8561],
and [RFC8795]. It references [EN301129] and [EN302217-1].
<CODE BEGINS> file "[email protected]"
module ietf-microwave-topology {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-microwave-topology";
prefix mwt;
import ietf-network {
prefix nw;
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-network-topology {
prefix nt;
reference
"RFC 8345: A YANG Data Model for Network Topologies";
}
import ietf-te-topology {
prefix tet;
reference
"RFC 8795: YANG Data Model for Traffic Engineering
(TE) Topologies";
}
import ietf-microwave-types {
prefix mw-types;
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
organization
"Internet Engineering Task Force (IETF) CCAMP WG";
contact
"WG Web: <https://datatracker.ietf.org/wg/ccamp/>
WG List: <[email protected]>
Editor: Jonas Ahlberg
<[email protected]>
Editor: Scott Mansfield
<[email protected]>
Editor: Min Ye
<[email protected]>
Editor: Italo Busi
<[email protected]>
Editor: Xi Li
<[email protected]>
Editor: Daniela Spreafico
<[email protected]>
";
description
"This is a module for microwave topology.
Copyright (c) 2024 IETF Trust and the persons
identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Revised BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 9656; see
the RFC itself for full legal notices.";
revision 2024-09-30 {
description
"Initial revision.";
reference
"RFC 9656: A YANG Data Model for Microwave Topology";
}
grouping rlt-mode {
description
"This grouping provides a flexible definition of the number
of bonded carriers and protecting carriers of a radio
link.";
leaf num-bonded-carriers {
type uint32;
mandatory true;
description
"Number of bonded carriers.";
}
leaf num-protecting-carriers {
type uint32;
mandatory true;
description
"Number of protecting carriers.";
}
}
grouping microwave-radio-link-attributes {
description
"Grouping used for attributes describing a microwave
radio link.";
container rlt-mode {
description
"This grouping provides a flexible definition of the number
of bonded carriers and protecting carriers of a radio
link.";
uses rlt-mode;
}
}
grouping microwave-carrier-attributes {
description
"Grouping used for attributes describing a microwave
carrier.";
leaf tx-frequency {
type uint32;
units "kHz";
description
"Selected transmitter frequency.
Related to the data node tx-frequency in RFC 8561.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf actual-rx-frequency {
type uint32;
units "kHz";
config false;
description
"Computed receiver frequency.
Related to the data node actual-rx-frequency in RFC 8561.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf channel-separation {
type uint32;
units "kHz";
description
"The amount of bandwidth allocated to a carrier. The
distance between adjacent channels in a radio
frequency channel arrangement.
Related to the data node channel-separation in RFC 8561.";
reference
"ETSI EN 302 217-1 and
RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf actual-tx-cm {
type identityref {
base mw-types:coding-modulation;
}
config false;
description
"Actual coding/modulation in transmitting direction.
Related to the data node actual-tx-cm in RFC 8561.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf actual-snir {
type decimal64 {
fraction-digits 1;
}
units "dB";
config false;
description
"Actual signal-to-noise plus the interference ratio
(0.1 dB resolution).
Related to the data node actual-snir in RFC 8561.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
leaf actual-transmitted-level {
type decimal64 {
fraction-digits 1;
}
units "dBm";
config false;
description
"Actual transmitted power level (0.1 dBm resolution).
Related to the data node actual-transmitted-level
in RFC 8561.";
reference
"ETSI EN 301 129 and
RFC 8561: A YANG Data Model for Microwave Radio Link";
}
}
grouping microwave-bandwidth {
description
"Grouping used for microwave bandwidth.";
leaf mw-bandwidth {
type uint64;
units "bits/seconds";
config false;
description
"Nominal microwave radio link and carrier bandwidth.";
}
}
augment "/nw:networks/nw:network/nw:network-types/"
+ "tet:te-topology" {
description
"Augment network types to define a microwave network
topology type.";
container mw-topology {
presence "Indicates a topology type of microwave.";
description
"Microwave topology type";
}
}
augment "/nw:networks/nw:network/nw:node/tet:te"
+ "/tet:te-node-attributes" {
when '../../../nw:network-types'
+ '/tet:te-topology/mwt:mw-topology' {
description
"Augmentation parameters apply only to networks with a
microwave network topology type.";
}
description
"Augment network node to indicate a microwave node.";
container mw-node {
presence "Indicates a microwave node.";
description
"Microwave node";
}
}
augment "/nw:networks/nw:network/nw:node/nt:termination-point/"
+ "tet:te" {
when '../../../nw:network-types/tet:te-topology/'
+ 'mwt:mw-topology' {
description
"Augmentation parameters apply only for networks with a
microwave network topology type.";
}
description
"Augmentation to add microwave-technology-specific
characteristics to a termination point.";
container mw-tp {
presence "Denotes a microwave termination point.";
description
"Specification of type of termination point.";
choice mw-tp-option {
description
"Selection of type of termination point.";
case microwave-rltp {
container microwave-rltp {
presence
"Denotes a microwave radio link termination point.
It corresponds to a microwave RLT interface as
defined in RFC 8561.";
description
"Denotes and describes a microwave radio link
termination point.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
}
case microwave-ctp {
container microwave-ctp {
presence "Denotes a microwave carrier termination point.
It corresponds to a microwave CT interface as
defined in RFC 8561.";
description
"Denotes and describes a microwave carrier
termination point.";
reference
"RFC 8561: A YANG Data Model for Microwave Radio Link";
}
}
}
}
}
augment "/nw:networks/nw:network/nt:link/tet:te/"
+ "tet:te-link-attributes" {
when '../../../nw:network-types/tet:te-topology/'
+ 'mwt:mw-topology' {
description
"Augmentation parameters apply only for networks with a
microwave network topology type.";
}
description
"Augmentation to add microwave-technology-specific
characteristics to a link.";
container mw-link {
presence "This indicates a microwave link";
description
"Specification of type of link.";
choice mw-link-option {
mandatory true;
description
"Selection of type of link.";
case microwave-radio-link {
container microwave-radio-link {
presence "Denotes a microwave radio link";
description
"Denotes and describes a microwave radio link.";
uses microwave-radio-link-attributes;
}
}
case microwave-carrier {
container microwave-carrier {
presence "Denotes a microwave carrier";
description
"Denotes and describes a microwave carrier.";
uses microwave-carrier-attributes;
}
}
}
}
}
augment "/nw:networks/nw:network/nt:link/tet:te/"
+ "tet:te-link-attributes/"
+ "tet:max-link-bandwidth/"
+ "tet:te-bandwidth" {
when '../../../../../nw:network-types/tet:te-topology/'
+ 'mwt:mw-topology' {
description
"Augmentation parameters apply only for networks with a
microwave network topology type.";
}
description
"Augmentation for TE bandwidth.";
uses microwave-bandwidth;
}
}
<CODE ENDS>
3. Security Considerations
The YANG module specified in this document defines schemas for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
The NETCONF access control model [RFC8341] provides the means to
restrict access for particular NETCONF or RESTCONF users to a
preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.
The YANG module specified in this document imports and augments the
ietf-network and ietf-network-topology models defined in [RFC8345].
The security considerations from [RFC8345] are applicable to the
module in this document.
There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes can be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
to these data nodes without proper protection can have a negative
effect on network operations. These are the subtrees and data nodes
and their sensitivity/vulnerability:
* rlt-mode: A malicious client could attempt to modify the mode in
which the radio link is configured and, thereby, change the
intended behavior of the link.
* tx-frequency and channel-separation: A malicious client could
attempt to modify the frequency configuration of a carrier, which
could modify the intended behavior or make the configuration
invalid and, thereby, stop the operation of it.
4. IANA Considerations
IANA has assigned a new URI from the "IETF XML Registry" [RFC3688] as
follows:
URI: urn:ietf:params:xml:ns:yang:ietf-microwave-topology
Registrant Contact: The IESG
XML: N/A; the requested URI is an XML namespace.
IANA has recorded the YANG module names in the "YANG Module Names"
registry [RFC6020] as follows:
Name: ietf-microwave-topology
Maintained by IANA?: N
Namespace: urn:ietf:params:xml:ns:yang:ietf-microwave-topology
Prefix: mwt
Reference: RFC 9656
5. References
5.1. Normative References
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N.,
Ananthakrishnan, H., and X. Liu, "A YANG Data Model for
Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March
2018, <https://www.rfc-editor.org/info/rfc8345>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[RFC8561] Ahlberg, J., Ye, M., Li, X., Spreafico, D., and M.
Vaupotic, "A YANG Data Model for Microwave Radio Link",
RFC 8561, DOI 10.17487/RFC8561, June 2019,
<https://www.rfc-editor.org/info/rfc8561>.
[RFC8795] Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
O. Gonzalez de Dios, "YANG Data Model for Traffic
Engineering (TE) Topologies", RFC 8795,
DOI 10.17487/RFC8795, August 2020,
<https://www.rfc-editor.org/info/rfc8795>.
5.2. Informative References
[EN301129] ETSI, "Transmission and Multiplexing (TM); Digital Radio
Relay Systems (DRRS); Synchronous Digital Hierarchy (SDH);
System performance monitoring parameters of SDH DRRS", EN
301 129 V1.1.2, May 1999, <https://www.etsi.org/deliver/
etsi_en/301100_301199/301129/01.01.02_60/
en_301129v010102p.pdf>.
[EN302217-1]
ETSI, "Fixed Radio Systems; Characteristics and
requirements for point-to-point equipment and antennas;
Part 1: Overview, common characteristics and system-
dependent requirements", EN 302 217-1 V3.1.1, May 2017,
<https://www.etsi.org/deliver/
etsi_en/302200_302299/30221701/03.01.01_60/
en_30221701v030101p.pdf>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for
Abstraction and Control of TE Networks (ACTN)", RFC 8453,
DOI 10.17487/RFC8453, August 2018,
<https://www.rfc-editor.org/info/rfc8453>.
[RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
"Handling Long Lines in Content of Internet-Drafts and
RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
<https://www.rfc-editor.org/info/rfc8792>.
[RFC8944] Dong, J., Wei, X., Wu, Q., Boucadair, M., and A. Liu, "A
YANG Data Model for Layer 2 Network Topologies", RFC 8944,
DOI 10.17487/RFC8944, November 2020,
<https://www.rfc-editor.org/info/rfc8944>.
[YANG-BWA-TOPO]
Ahlberg, J., Mansfield, S., Ye, M., Busi, I., Li, X., and
D. Spreafico, "A YANG Data Model for Bandwidth
Availability Topology", Work in Progress, Internet-Draft,
draft-ietf-ccamp-bwa-topo-yang-01, 18 October 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-
bwa-topo-yang-01>.
[YANG-IF-REF-TOPO]
Ahlberg, J., Mansfield, S., Ye, M., Busi, I., Li, X., and
D. Spreafico, "A YANG Data Model for Interface Reference
Topology", Work in Progress, Internet-Draft, draft-ietf-
ccamp-if-ref-topo-yang-01, 18 October 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-
if-ref-topo-yang-01>.
Appendix A. Microwave Topology Model with Base Topology Models
The tree below shows an example of the relevant leafs for a complete
Microwave Topology Model including the augmented Network Topology
Model defined in [RFC8345] and the Traffic Engineering (TE)
Topologies model defined in [RFC8795]. There are also JSON-based
instantiations of the Microwave Topology Model for a couple of small
network examples.
module: ietf-network
+--rw networks
+--rw network* [network-id]
| +--rw network-id network-id
| +--rw network-types
| | +--rw tet:te-topology!
| | +--rw mwt:mw-topology!
| +--rw supporting-network* [network-ref]
| | +--rw network-ref -> /networks/network/network-id
| +--rw node* [node-id]
| | +--rw node-id node-id
| | +--rw supporting-node* [network-ref node-ref]
| | | +--rw network-ref
| | | | -> ../../../supporting-network/network-ref
| | | +--rw node-ref -> /networks/network/node/node-id
| | +--rw nt:termination-point* [tp-id]
| | | +--rw nt:tp-id tp-id
| | | +--rw nt:supporting-termination-point*
| | | | [network-ref node-ref tp-ref]
| | | | +--rw nt:network-ref
| | | | | -> ../../../nw:supporting-node/network-ref
| | | | +--rw nt:node-ref
| | | | | -> ../../../nw:supporting-node/node-ref
| | | | +--rw nt:tp-ref leafref
| | | +--rw tet:te-tp-id?
| | | | te-types:te-tp-id
| | | +--rw tet:te!
| | | +--rw tet:name? string
| | | +--ro tet:geolocation
| | | | +--ro tet:altitude? int64
| | | | +--ro tet:latitude?
| | | | | geographic-coordinate-degree
| | | | +--ro tet:longitude?
| | | | geographic-coordinate-degree
| | | +--rw mwt:mw-tp!
| | | +--rw (mwt:mw-tp-option)?
| | | +--:(mwt:microwave-rltp)
| | | | +--rw mwt:microwave-rltp!
| | | +--:(mwt:microwave-ctp)
| | | +--rw mwt:microwave-ctp!
| | +--rw tet:te-node-id? te-types:te-node-id
| +--rw nt:link* [link-id]
| | +--rw nt:link-id link-id
| | +--rw nt:source
| | | +--rw nt:source-node? -> ../../../nw:node/node-id
| | | +--rw nt:source-tp? leafref
| | +--rw nt:destination
| | | +--rw nt:dest-node? -> ../../../nw:node/node-id
| | | +--rw nt:dest-tp? leafref
| | +--rw nt:supporting-link* [network-ref link-ref]
| | | +--rw nt:network-ref
| | | | -> ../../../nw:supporting-network/network-ref
| | | +--rw nt:link-ref leafref
| | +--rw tet:te!
| | +--rw (tet:bundle-stack-level)?
| | | +--:(tet:bundle)
| | | | +--rw tet:bundled-links
| | | | +--rw tet:bundled-link* [sequence]
| | | | +--rw tet:sequence uint32
| | | | +--rw tet:src-tp-ref? leafref
| | | | +--rw tet:des-tp-ref? leafref
| | +--rw tet:te-link-attributes
| | | +--rw tet:name? string
| | | +--rw tet:max-link-bandwidth
| | | | +--rw tet:te-bandwidth
| | | | +--ro mwt:mw-bandwidth? uint64
| | | +--rw mwt:mw-link!
| | | +--rw (mwt:mw-link-option)
| | | +--:(mwt:microwave-radio-link)
| | | | +--rw mwt:microwave-radio-link!
| | | | +--rw mwt:rlt-mode
| | | | +--rw mwt:num-bonded-carriers
| | | | | uint32
| | | | +--rw mwt:num-protecting-carriers
| | | | uint32
| | | +--:(mwt:microwave-carrier)
| | | +--rw mwt:microwave-carrier!
| | | +--rw mwt:tx-frequency?
| | | | uint32
| | | +--ro mwt:actual-rx-frequency?
| | | | uint32
| | | +--rw mwt:channel-separation?
| | | | uint32
| | | +--ro mwt:actual-tx-cm?
| | | | identityref
| | | +--ro mwt:actual-snir?
| | | | decimal64
| | | +--ro mwt:actual-transmitted-level?
| | | decimal64
Figure 2: Microwave Topology with Augmentations Tree
The Microwave Topology Model augments the TE Topology Model.
Node N1 Node N2
+--------------+ +--------------+
| +----------+ | | +----------+ | L2-network
| |L2-N1-TP1 | | L2-N1-N2 | |L2-N2-TP2 | | -L2 topology
| | o<--------------------->o | |
| +----------+ | ' | +----------+ | Supporting
| : | ' | : | ' mw link
| : | ' | : | : TPs
| +----------+ | ' | +----------+ |
| |mw-N1- | | mwrl-N1-N2 | | mw-N2- | | MW-network
| |RLTP1 o<----------*---------->o RLTP2 | | -MW topology
| +----------+ | / \ | +----------+ |
| : : | / \ | : : |
| :: | / \ | :: | Supporting
| +-------:--+ | / \ | +--:-------+ | : TPs
| |mw-N1- : *---+--' '--+---* : mw-N2-| | * carriers
| |CTP1 : o<--|---------------|-->o : CTP2 | | as bundled
| +-------:--+ | | mwc-N1-N2-A | | +--:-------+ | links
| : | | | | : |
| +----------+ | | | | +----------+ |
| |mw-N1-CTP3*---' '---*mw-N2-CTP4| |
| | o<--------------------->o | |
| +----------+ | mwc-N1-N2-B | +----------+ |
+--------------+ +--------------+
Figure 3: Example for L2 over Microwave
A.1. Instance Data for 2+0 Mode for a Bonded Configuration
An L2 network with a supporting microwave network, showing a 2+0
microwave configuration is provided below. The num-bonded-carriers =
2, and the num-protecting-carriers = 0. This means both carriers are
active, so there is no redundancy and there is more capacity. The
JSON encoding of the 2+0 example data follows:
{
"ietf-network:networks": {
"network": [
{
"network-id": "example:L2-network",
"network-types": {
"ietf-te-topology:te-topology": {}
},
"supporting-network": [
{
"network-ref": "example:mw-network"
}
],
"node": [
{
"node-id": "example:L2-N1",
"supporting-node": [
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N1"
}
],
"ietf-network-topology:termination-point": [
{
"tp-id": "example:L2-N1-TP1",
"supporting-termination-point": [
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N1",
"tp-ref": "example:mw-N1-RLTP1"
}
]
}
]
},
{
"node-id": "example:L2-N2",
"supporting-node": [
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N2"
}
],
"ietf-network-topology:termination-point": [
{
"tp-id": "example:L2-N2-TP2",
"supporting-termination-point": [
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N2",
"tp-ref": "example:mw-N2-RLTP2"
}
]
}
]
}
],
"ietf-network-topology:link": [
{
"link-id": "example:L2-N1-N2",
"source": {
"source-node": "example:L2-N1",
"source-tp": "example:L2-N1-TP1"
},
"destination": {
"dest-node": "example:L2-N2",
"dest-tp": "example:L2-N2-TP2"
},
"supporting-link": [
{
"network-ref": "example:mw-network",
"link-ref": "example:mwrl-N1-N2"
}
]
}
]
},
{
"network-id": "example:mw-network",
"network-types": {
"ietf-te-topology:te-topology": {
"ietf-microwave-topology:mw-topology": {}
}
},
"supporting-network": [
{
"network-ref": "example:mw-network"
}
],
"node": [
{
"node-id": "example:mw-N1",
"supporting-node": [
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N1"
}
],
"ietf-network-topology:termination-point": [
{
"tp-id": "example:mw-N1-RLTP1",
"supporting-termination-point": [
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N1",
"tp-ref": "example:mw-N1-CTP1"
},
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N1",
"tp-ref": "example:mw-N1-CTP3"
}
],
"ietf-te-topology:te-tp-id": "192.0.2.3",
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp": {
"microwave-rltp": {}
}
}
},
{
"tp-id": "example:mw-N1-CTP1",
"ietf-te-topology:te-tp-id": 1,
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp": {
"microwave-ctp": {}
}
}
},
{
"tp-id": "example:mw-N1-CTP3",
"ietf-te-topology:te-tp-id": 2,
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp": {
"microwave-ctp": {}
}
}
}
]
},
{
"node-id": "example:mw-N2",
"supporting-node": [
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N2"
}
],
"ietf-network-topology:termination-point": [
{
"tp-id": "example:mw-N2-RLTP2",
"supporting-termination-point": [
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N2",
"tp-ref": "example:mw-N2-CTP2"
},
{
"network-ref": "example:mw-network",
"node-ref": "example:mw-N2",
"tp-ref": "example:mw-N2-CTP4"
}
],
"ietf-te-topology:te-tp-id": "192.0.2.4",
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp": {
"microwave-rltp": {}
}
}
},
{
"tp-id": "example:mw-N2-CTP2",
"ietf-te-topology:te-tp-id": 1,
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp": {
"microwave-ctp": {}
}
}
},
{
"tp-id": "example:mw-N2-CTP4",
"ietf-te-topology:te-tp-id": 2,
"ietf-te-topology:te": {
"ietf-microwave-topology:mw-tp": {
"microwave-ctp": {}
}
}
}
]
}
],
"ietf-network-topology:link": [
{
"link-id": "example:mwrl-N1-N2",
"source": {
"source-node": "example:mw-N1",
"source-tp": "example:mw-N1-RLTP1"
},
"destination": {
"dest-node": "example:mw-N2",
"dest-tp": "example:mw-N2-RLTP2"
},
"ietf-te-topology:te": {
"bundled-links": {
"bundled-link": [
{
"sequence": 1,
"src-tp-ref": "example:mw-N1-CTP1",
"des-tp-ref": "example:mw-N2-CTP2"
},
{
"sequence": 2,
"src-tp-ref": "example:mw-N1-CTP3",
"des-tp-ref": "example:mw-N2-CTP4"
}
]
},
"te-link-attributes": {
"ietf-microwave-topology:mw-link": {
"microwave-radio-link": {
"rlt-mode": {
"num-bonded-carriers": 2,
"num-protecting-carriers": 0
}
}
}
}
}
},
{
"link-id": "example:mwc-N1-N2-A",
"source": {
"source-node": "example:mw-N1",
"source-tp": "example:mw-N1-CTP1"
},
"destination": {
"dest-node": "example:mw-N2",
"dest-tp": "example:mw-N2-CTP2"
},
"ietf-te-topology:te": {
"te-link-attributes": {
"ietf-microwave-topology:mw-link": {
"microwave-carrier": {
"tx-frequency": 10728000,
"channel-separation": 28000
}
}
}
}
},
{
"link-id": "example:mwc-N1-N2-B",
"source": {
"source-node": "example:mw-N1",
"source-tp": "example:mw-N1-CTP3"
},
"destination": {
"dest-node": "example:mw-N2",
"dest-tp": "example:mw-N2-CTP4"
},
"ietf-te-topology:te": {
"te-link-attributes": {
"ietf-microwave-topology:mw-link": {
"microwave-carrier": {
"tx-frequency": 10528000,
"channel-separation": 28000
}
}
}
}
}
]
}
]
}
}
Notes:
Fixed URI names to follow RFC8407bis guidelines.
See also https://mailarchive.ietf.org/arch/msg/ccamp/OQ-oLx2smsmdC4dcn6aB9i-hWE8/
B.2. Instance Data for Geolocation Information
This example provides a JSON snippet that shows geolocation
information.
"node": [
{
"node-id": "example:mw-N1",
EID 8134 (Verified) is as follows:Section: B.2
Original Text:
"node-id": "mw-N1",
Corrected Text:
"node-id": "example:mw-N1",
Notes:
Fixed URI name to follow RFC8407bis guidelines.
See also https://mailarchive.ietf.org/arch/msg/ccamp/OQ-oLx2smsmdC4dcn6aB9i-hWE8/
...
"ietf-te-topology:te" : {
"ietf-te-topology:geolocation": {
"altitude": "200000",
"latitude": "45",
"longitude": "90"
}
},
"ietf-network-topology:termination-point": [
...
Acknowledgments
This document was initially prepared using the kramdown RFC tool
written and maintained by Carsten Bormann. Thanks to Martin Thomson
for the GitHub integration of the kramdown RFC tool and for the aasvg
tool, which is used for the ascii-to-SVG conversion.
The authors would like to thank Tom Petch, Éric Vyncke, and Rob
Wilton for their reviews.
Contributors
Italo Busi
Huawei Technologies
Email: [email protected]
Authors' Addresses
Scott Mansfield (editor)
Ericsson Inc
Email: [email protected]
Jonas Ahlberg
Ericsson AB
Lindholmspiren 11
SE-417 56 Goteborg
Sweden
Email: [email protected]
Min Ye
Huawei Technologies
No.1899, Xiyuan Avenue
Chengdu
611731
China
Email: [email protected]
Xi Li
NEC Laboratories Europe
Kurfursten-Anlage 36
69115 Heidelberg
Germany
Email: [email protected]
Daniela Spreafico
Nokia - IT
Via Energy Park, 14
20871 Vimercate (MI)
Italy
Email: [email protected]