This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 5085
Internet Engineering Task Force (IETF)                       R. Aggarwal
Request for Comments: 5884                                   K. Kompella
Updates: 1122                                           Juniper Networks
Category: Standards Track                                      T. Nadeau
ISSN: 2070-1721                                                       BT
                                                              G. Swallow
                                                     Cisco Systems, Inc.
                                                               June 2010


                Bidirectional Forwarding Detection (BFD)
                  for MPLS Label Switched Paths (LSPs)

Abstract

   One desirable application of Bidirectional Forwarding Detection (BFD)
   is to detect a Multiprotocol Label Switching (MPLS) Label Switched
   Path (LSP) data plane failure.  LSP Ping is an existing mechanism for
   detecting MPLS data plane failures and for verifying the MPLS LSP
   data plane against the control plane.  BFD can be used for the
   former, but not for the latter.  However, the control plane
   processing required for BFD Control packets is relatively smaller
   than the processing required for LSP Ping messages.  A combination of
   LSP Ping and BFD can be used to provide faster data plane failure
   detection and/or make it possible to provide such detection on a
   greater number of LSPs.  This document describes the applicability of
   BFD in relation to LSP Ping for this application.  It also describes
   procedures for using BFD in this environment.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc5884.

Copyright Notice

   Copyright (c) 2010 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.

Table of Contents

   1. Introduction ....................................................3
   2. Specification of Requirements ...................................3
   3. Applicability ...................................................3
      3.1. BFD for MPLS LSPs: Motivation ..............................3
      3.2. Using BFD in Conjunction with LSP Ping .....................5
   4. Theory of Operation .............................................6
   5. Initialization and Demultiplexing ...............................7
   6. Session Establishment ...........................................7
      6.1. BFD Discriminator TLV in LSP Ping ..........................8
   7. Encapsulation ...................................................8
   8. Security Considerations .........................................9
   9. IANA Considerations ............................................10
   10. Acknowledgments ...............................................10
   11. References ....................................................10
      11.1. Normative References .....................................10
      11.2. Informative References ...................................10

1.  Introduction

   One desirable application of Bidirectional Forwarding Detection (BFD)
   is to track the liveness of a Multiprotocol Label Switching (MPLS)
   Label Switched Path (LSP).  In particular, BFD can be used to detect
   a data plane failure in the forwarding path of an MPLS LSP.  LSP Ping
   [RFC4379] is an existing mechanism for detecting MPLS LSP data plane
   failures and for verifying the MPLS LSP data plane against the
   control plane.  This document describes the applicability of BFD in
   relation to LSP Ping for detecting MPLS LSP data plane failures.  It
   also describes procedures for using BFD for detecting MPLS LSP data
   plane failures.

2.  Specification of Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Applicability

   In the event of an MPLS LSP failing to deliver data traffic, it may
   not always be possible to detect the failure using the MPLS control
   plane.  For instance, the control plane of the MPLS LSP may be
   functional while the data plane may be mis-forwarding or dropping
   data.  Hence, there is a need for a mechanism to detect a data plane
   failure in the MPLS LSP path [RFC4377].

3.1.  BFD for MPLS LSPs: Motivation

   LSP Ping described in [RFC4379] is an existing mechanism for
   detecting an MPLS LSP data plane failure.  In addition, LSP Ping also
   provides a mechanism for verifying the MPLS control plane against the
   data plane.  This is done by ensuring that the LSP is mapped to the
   same Forwarding Equivalence Class (FEC), at the egress, as the
   ingress.

   BFD cannot be used for verifying the MPLS control plane against the
   data plane.  However, BFD can be used to detect a data plane failure
   in the forwarding path of an MPLS LSP.  The LSP may be associated
   with any of the following FECs:

      a) Resource Reservation Protocol (RSVP) LSP_Tunnel IPv4/IPv6
         Session [RFC3209]

      b) Label Distribution Protocol (LDP) IPv4/IPv6 prefix [RFC5036]

      c) Virtual Private Network (VPN) IPv4/IPv6 prefix [RFC4364]

      d) Layer 2 VPN [L2-VPN]

      e) Pseudowires based on PWid FEC and Generalized PWid FEC
         [RFC4447]

      f) Border Gateway Protocol (BGP) labeled prefixes [RFC3107]

   LSP Ping includes extensive control plane verification.  BFD, on the
   other hand, was designed as a lightweight means of testing only the
   data plane.  As a result, LSP Ping is computationally more expensive
   than BFD for detecting MPLS LSP data plane faults.  BFD is also more
   suitable for being implemented in hardware or firmware due to its
   fixed packet format.  Thus, the use of BFD for detecting MPLS LSP
   data plane faults has the following advantages:

      a) Support for fault detection for greater number of LSPs.

      b) Fast detection.  Detection with sub-second granularity is
         considered as fast detection.  LSP Ping is intended to be used
         in an environment where fault detection messages are exchanged,
         either for diagnostic purposes or for infrequent periodic fault
         detection, in the order of tens of seconds or minutes.  Hence,
         it is not appropriate for fast detection.  BFD, on the other
         hand, is designed for sub-second fault detection intervals.
         Following are some potential cases when fast detection may be
         desirable for MPLS LSPs:

         1. In the case of a bypass LSP used for a facility-based link
            or node protection [RFC4090].  In this case, the bypass LSP
            is essentially being used as an alternate link to protect
            one or more LSPs.  It represents an aggregate and is used to
            carry data traffic belonging to one or more LSPs, when the
            link or the node being protected fails.  Hence, fast failure
            detection of the bypass LSP may be desirable particularly in
            the event of link or node failure when the data traffic is
            moved to the bypass LSP.

         2. MPLS Pseudowires (PWs).  Fast detection may be desired for
            MPLS PWs depending on i) the model used to layer the MPLS
            network with the Layer 2 network, and ii) the service that
            the PW is emulating.  For a non-overlay model between the
            Layer 2 network and the MPLS network, the provider may rely
            on PW fault detection to provide service status to the end-
            systems.  Also, in that case, interworking scenarios such as
            ATM/Frame Relay interworking may force periodic PW fault
            detection messages.  Depending on the requirements of the
            service that the MPLS PW is emulating, fast failure
            detection may be desirable.

   There may be other potential cases where fast failure detection is
   desired for MPLS LSPs.

3.2.  Using BFD in Conjunction with LSP Ping

   BFD can be used for MPLS LSP data plane fault detection.  However, it
   does not have all the functionality of LSP Ping.  In particular, it
   cannot be used for verifying the control plane against the data
   plane.  LSP Ping performs the following functions that are outside
   the scope of BFD:

      a) Association of an LSP Ping Echo request message with a FEC.  In
         the case of Penultimate Hop Popping (PHP) or when the egress
         Label Switching Router (LSR) distributes an explicit null label
         to the penultimate hop router, for a single label stack LSP,
         the only way to associate a fault detection message with a FEC
         is by carrying the FEC in the message.  LSP Ping provides this
         functionality.  Next-hop label allocation also makes it
         necessary to carry the FEC in the fault detection message as
         the label alone is not sufficient to identify the LSP being
         verified.  In addition, presence of the FEC in the Echo request
         message makes it possible to verify the control plane against
         the data plane at the egress LSR.

      b) Equal Cost Multi-Path (ECMP) considerations.  LSP Ping
         traceroute makes it possible to probe multiple alternate paths
         for LDP IP FECs.

      c) Traceroute.  LSP Ping supports traceroute for a FEC and it can
         be used for fault isolation.

   Hence, BFD is used in conjunction with LSP Ping for MPLS LSP fault
   detection:

      i) LSP Ping is used for bootstrapping the BFD session as described
         later in this document.

     ii) BFD is used to exchange fault detection (i.e., BFD session)
         packets at the required detection interval.

    iii) LSP Ping is used to periodically verify the control plane
         against the data plane by ensuring that the LSP is mapped to
         the same FEC, at the egress, as the ingress.

4.  Theory of Operation

   To use BFD for fault detection on an MPLS LSP, a BFD session MUST be
   established for that particular MPLS LSP.  BFD Control packets MUST
   be sent along the same data path as the LSP being verified and are
   processed by the BFD processing module of the egress LSR.  If the LSP
   is associated with multiple FECs, a BFD session SHOULD be established
   for each FEC.  For instance, this may happen in the case of next-hop
   label allocation.  Hence, the operation is conceptually similar to
   the data plane fault detection procedures of LSP Ping.

   If MPLS fast-reroute is being used for the MPLS LSP, the use of BFD
   for fault detection can result in false fault detections if the BFD
   fault detection interval is less than the MPLS fast-reroute
   switchover time.  When MPLS fast-reroute is triggered because of a
   link or node failure, BFD Control packets will be dropped until
   traffic is switched on to the backup LSP.  If the time taken to
   perform the switchover exceeds the BFD fault detection interval, a
   fault will be declared even though the MPLS LSP is being locally
   repaired.  To avoid this, the BFD fault detection interval should be
   greater than the fast-reroute switchover time.  An implementation
   SHOULD provide configuration options to control the BFD fault
   detection interval.

   If there are multiple alternate paths from an ingress LSR to an
   egress LSR for an LDP IP FEC, LSP Ping traceroute MAY be used to
   determine each of these alternate paths.  A BFD session SHOULD be
   established for each alternate path that is discovered.

   Periodic LSP Ping Echo request messages SHOULD be sent by the ingress
   LSR to the egress LSR along the same data path as the LSP.  This is
   to periodically verify the control plane against the data plane by
   ensuring that the LSP is mapped to the same FEC, at the egress, as
   the ingress.  The rate of generation of these LSP Ping Echo request
   messages SHOULD be significantly less than the rate of generation of
   the BFD Control packets.  An implementation MAY provide configuration
   options to control the rate of generation of the periodic LSP Ping
   Echo request messages.

   To enable fault detection procedures specified in this document, for
   a particular MPLS LSP, this document requires the ingress and egress
   LSRs to be configured.  This includes configuration for supporting
   BFD and LSP Ping as specified in this document.  It also includes
   configuration that enables the ingress LSR to determine the method
   used by the egress LSR to identify Operations, Administration, and
   Maintenance (OAM) packets, e.g., whether the Time to Live (TTL) of
   the innermost MPLS label needs to be set to 1 to enable the egress

   LSR to identify the OAM packet.  For fault detection for MPLS PWs,
   this document assumes that the PW control channel type [RFC5085] is
   configured and the support of LSP Ping is also configured.

5.  Initialization and Demultiplexing

   A BFD session may be established for a FEC associated with an MPLS
   LSP.  As described above, in the case of PHP or when the egress LSR
   distributes an explicit null label to the penultimate hop router, or
   next-hop label allocation, the BFD Control packet received by the
   egress LSR does not contain sufficient information to associate it
   with a BFD session.  Hence, the demultiplexing MUST be done using the
   remote discriminator field in the received BFD Control packet.  The
   exchange of BFD discriminators for this purpose is described in the
   next section.

6.  Session Establishment

   A BFD session is bootstrapped using LSP Ping.  This specification
   describes procedures only for BFD asynchronous mode.  BFD demand mode
   is outside the scope of this specification.  Further, the use of the
   Echo function is outside the scope of this specification.  The
   initiation of fault detection for a particular <MPLS LSP, FEC>
   combination results in the exchange of LSP Ping Echo request and Echo
   reply packets, in the ping mode, between the ingress and egress LSRs
   for that <MPLS LSP, FEC>.  To establish a BFD session, an LSP Ping
   Echo request message MUST carry the local discriminator assigned by
   the ingress LSR for the BFD session.  This MUST subsequently be used
   as the My Discriminator field in the BFD session packets sent by the
   ingress LSR.

   On receipt of the LSP Ping Echo request message, the egress LSR 
MUST send a BFD Control packet to the ingress LSR, if the
validation of the FEC in the LSP Ping Echo request message
succeeds.  This BFD Control packet MUST set the Your Discriminator
field to the discriminator received from the ingress LSR in the LSP
Ping Echo request message. The local discriminator assigned by the
egress LSR MUST be used as the My Discriminator field in the BFD
session packets sent by the egress LSR.

The ingress LSR follows the procedures in [BFD] to send BFD Control
packets to the egress LSR in response to the BFD Control packets
received from the egress LSR.  The BFD Control packets from the
ingress to the egress LSR MUST set the local discriminator of the
egress LSR in the Your Discriminator field. The egress LSR
demultiplexes the BFD session based on the received Your
Discriminator field. As mentioned above, the egress LSR MUST send
Control packets to the ingress LSR with the Your Discriminator field
set to the local discriminator of the ingress LSR.The ingress LSR
uses this to demultiplex the BFD session.

The egress LSR processes the LSP Ping Echo request message in
accordance with the procedures defined in [RFC 8029]. The LSP Ping
Echo reply message generated by the egress LSR MAY carry the local
discriminator assigned by it for the BFD session, as specified in
section 6.1.
EID 5085 (Verified) is as follows:

Section: 6

Original Text:

   On receipt of the LSP Ping Echo request message, the egress LSR MUST
   send a BFD Control packet to the ingress LSR, if the validation of
   the FEC in the LSP Ping Echo request message succeeds.  This BFD
   Control packet MUST set the Your Discriminator field to the
   discriminator received from the ingress LSR in the LSP Ping Echo
   request message.  The egress LSR MAY respond with an LSP Ping Echo
   reply message that carries the local discriminator assigned by it for
   the BFD session.  The local discriminator assigned by the egress LSR
   MUST be used as the My Discriminator field in the BFD session packets
   sent by the egress LSR.

   The ingress LSR follows the procedures in [BFD] to send BFD Control
   packets to the egress LSR in response to the BFD Control packets
   received from the egress LSR.  The BFD Control packets from the
   ingress to the egress LSR MUST set the local discriminator of the
   egress LSR, in the Your Discriminator field.  The egress LSR
   demultiplexes the BFD session based on the received Your
   Discriminator field.  As mentioned above, the egress LSR MUST send
   Control packets to the ingress LSR with the Your Discriminator field
   set to the local discriminator of the ingress LSR.  The ingress LSR
   uses this to demultiplex the BFD session.

Corrected Text:

On receipt of the LSP Ping Echo request message, the egress LSR
MUST send a BFD Control packet to the ingress LSR, if the
validation of the FEC in the LSP Ping Echo request message
succeeds.  This BFD Control packet MUST set the Your Discriminator
field to the discriminator received from the ingress LSR in the LSP
Ping Echo request message. The local discriminator assigned by the
egress LSR MUST be used as the My Discriminator field in the BFD
session packets sent by the egress LSR.

The ingress LSR follows the procedures in [BFD] to send BFD Control
packets to the egress LSR in response to the BFD Control packets
received from the egress LSR.  The BFD Control packets from the
ingress to the egress LSR MUST set the local discriminator of the
egress LSR in the Your Discriminator field. The egress LSR
demultiplexes the BFD session based on the received Your
Discriminator field. As mentioned above, the egress LSR MUST send
Control packets to the ingress LSR with the Your Discriminator field
set to the local discriminator of the ingress LSR.The ingress LSR
uses this to demultiplex the BFD session.

The egress LSR processes the LSP Ping Echo request message in
accordance with the procedures defined in [RFC 8029]. The LSP Ping
Echo reply message generated by the egress LSR MAY carry the local
discriminator assigned by it for the BFD session, as specified in
section 6.1.
Notes:
Submitter:
It is not clear from the original text which of the following is optional:
- The egress MUST send a reply, but the discriminator in the reply is optional
- The reply itself is optional

Technically, the reply cannot be optional, because the egress needs to report LSP-Ping verification status to the ingress.

The proposed text recommends to include BFD discriminator in the reply. This was the intent of the original text.

Verifier:
The original Errata proposed correcting the last sentences of the second paragraph of Section 6. After discussion in the working group, it was agreed both the second and third paragraphs shown above of Section 6 needed to be revised to the three paragraphs of the corrected text shown above.
6.1. BFD Discriminator TLV in LSP Ping LSP Ping Echo request and Echo reply messages carry a BFD discriminator TLV for the purpose of session establishment as described above. IANA has assigned a type value of 15 to this TLV. This TLV has a length of 4. The value contains the 4-byte local discriminator that the LSR, sending the LSP Ping message, associates with the BFD session. If the BFD session is not in UP state, the periodic LSP Ping Echo request messages MUST include the BFD Discriminator TLV. 7. Encapsulation BFD Control packets sent by the ingress LSR MUST be encapsulated in the MPLS label stack that corresponds to the FEC for which fault detection is being performed. If the label stack has a depth greater than one, the TTL of the inner MPLS label MAY be set to 1. This may be necessary for certain FECs to enable the egress LSR's control plane to receive the packet [RFC4379]. For MPLS PWs, alternatively, the presence of a fault detection message may be indicated by setting a bit in the control word [RFC5085]. The BFD Control packet sent by the ingress LSR MUST be a UDP packet with a well-known destination port 3784 [BFD-IP] and a source port assigned by the sender as per the procedures in [BFD-IP]. The source IP address is a routable address of the sender. The destination IP address MUST be randomly chosen from the 127/8 range for IPv4 and from the 0:0:0:0:0:FFFF:7F00/104 range for IPv6 with the following exception. If the FEC is an LDP IP FEC, the ingress LSR may discover multiple alternate paths to the egress LSR for this FEC using LSP Ping traceroute. In this case, the destination IP address, used in a BFD session established for one such alternate path, is the address in the 127/8 range for IPv4 or 0:0:0:0:0:FFFF:7F00/104 range for IPv6 discovered by LSP Ping traceroute [RFC4379] to exercise that particular alternate path. The motivation for using the address range 127/8 is the same as specified in Section 2.1 of [RFC4379]. This is an exception to the behavior defined in [RFC1122]. The IP TTL or hop limit MUST be set to 1 [RFC4379]. BFD Control packets sent by the egress LSR are UDP packets. The source IP address is a routable address of the replier. The BFD Control packet sent by the egress LSR to the ingress LSR MAY be routed based on the destination IP address as per the procedures in [BFD-MHOP]. If this is the case, the destination IP address MUST be set to the source IP address of the LSP Ping Echo request message, received by the egress LSR from the ingress LSR. Or the BFD Control packet sent by the egress LSR to the ingress LSR MAY be encapsulated in an MPLS label stack. In this case, the presence of the fault detection message is indicated as described above. This may be the case if the FEC for which the fault detection is being performed corresponds to a bidirectional LSP or an MPLS PW. This may also be the case when there is a return LSP from the egress LSR to the ingress LSR. In this case, the destination IP address MUST be randomly chosen from the 127/8 range for IPv4 and from the 0:0:0:0:0:FFFF:7F00/104 range for IPv6. The BFD Control packet sent by the egress LSR MUST have a well-known destination port 4784, if it is routed [BFD-MHOP], or it MUST have a well-known destination port 3784 [BFD-IP] if it is encapsulated in a MPLS label stack. The source port MUST be assigned by the egress LSR as per the procedures in [BFD-IP]. Note that once the BFD session for the MPLS LSP is UP, either end of the BFD session MUST NOT change the source IP address and the local discriminator values of the BFD Control packets it generates, unless it first brings down the session. This implies that an LSR MUST ignore BFD packets for a given session, demultiplexed using the received Your Discriminator field, if the session is in UP state and if the My Discriminator or the Source IP address fields of the received packet do not match the values associated with the session. 8. Security Considerations Security considerations discussed in [BFD], [BFD-MHOP], and [RFC4379] apply to this document. For BFD Control packets sent by the ingress LSR or when the BFD Control packet sent by the egress LSR are encapsulated in an MPLS label stack, MPLS security considerations apply. These are discussed in [MPLS-SEC]. When BFD Control packets sent by the egress LSR are routed, the authentication considerations discussed in [BFD-MHOP] should be followed. 9. IANA Considerations This document introduces a BFD discriminator TLV in LSP Ping. The BFD Discriminator has been assigned a value of 15 from the LSP Ping TLVs and sub-TLVs registry maintained by IANA. 10. Acknowledgments We would like to thank Yakov Rekhter, Dave Katz, and Ina Minei for contributing to the discussions that formed the basis of this document and for their comments. Thanks to Dimitri Papadimitriou for his comments and review. Thanks to Carlos Pignataro for his comments and review. 11. References 11.1. Normative References [BFD] Katz, D. and D. Ward, "Bidirectional Forwarding Detection", RFC 5880, June 2010. [BFD-IP] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop)", RFC 5881, June 2010. [RFC4379] Kompella, K. and G. Swallow, "Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures", RFC 4379, February 2006. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts - Communication Layers", STD 3, RFC 1122, October 1989. 11.2. Informative References [BFD-MHOP] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD) for Multihop Paths", RFC 5883, June 2010. [RFC5085] Nadeau, T., Ed., and C. Pignataro, Ed., "Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires", RFC 5085, December 2007. [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, December 2001. [RFC4090] Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090, May 2005. [RFC5036] Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed., "LDP Specification", RFC 5036, October 2007. [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private Networks (VPNs)", RFC 4364, February 2006. [L2-VPN] Kompella, K., Leelanivas, M., Vohra, Q., Achirica, J., Bonica, R., Cooper, D., Liljenstolpe, C., Metz, E., Ould- Brahim, H., Sargor, C., Shah, H., Srinivasan, and Z. Zhang, "Layer 2 VPNs Over Tunnels", Work in Progress, February 2003. [RFC4447] Martini, L., Ed., Rosen, E., El-Aawar, N., Smith, T., and G. Heron, "Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)", RFC 4447, April 2006. [RFC3107] Rekhter, Y. and E. Rosen, "Carrying Label Information in BGP-4", RFC 3107, May 2001. [RFC4377] Nadeau, T., Morrow, M., Swallow, G., Allan, D., and S. Matsushima, "Operations and Management (OAM) Requirements for Multi-Protocol Label Switched (MPLS) Networks", RFC 4377, February 2006. [MPLS-SEC] Fang, L., Ed., "Security Framework for MPLS and GMPLS Networks", Work in Progress, October 2009. Authors' Addresses Rahul Aggarwal Juniper Networks 1194 N. Mathilda Ave. Sunnyvale, CA 94089 USA EMail: [email protected] Kireeti Kompella Juniper Networks 1194 N. Mathilda Ave. Sunnyvale, CA 94089 USA EMail: [email protected] Thomas D. Nadeau BT BT Centre 81 Newgate Street London EC1A 7AJ UK EMail: [email protected] George Swallow Cisco Systems, Inc. 300 Beaver Brook Road Boxborough, MA 01719 USA EMail: [email protected]