This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 139
Network Working Group                                   J. Loughney, Ed.
Request for Comments: 4294                                         Nokia
Category: Informational                                       April 2006


                         IPv6 Node Requirements

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   This document defines requirements for IPv6 nodes.  It is expected
   that IPv6 will be deployed in a wide range of devices and situations.
   Specifying the requirements for IPv6 nodes allows IPv6 to function
   well and interoperate in a large number of situations and
   deployments.

Table of Contents

   1. Introduction ....................................................2
      1.1. Requirement Language .......................................3
      1.2. Scope of This Document .....................................3
      1.3. Description of IPv6 Nodes ..................................3
   2. Abbreviations Used in This Document .............................3
   3. Sub-IP Layer ....................................................4
      3.1. Transmission of IPv6 Packets over Ethernet Networks
           - RFC 2464 .................................................4
      3.2. IP version 6 over PPP - RFC 2472 ...........................4
      3.3. IPv6 over ATM Networks - RFC 2492 ..........................4
   4. IP Layer ........................................................5
      4.1. Internet Protocol Version 6 - RFC 2460 .....................5
      4.2. Neighbor Discovery for IPv6 - RFC 2461 .....................5
      4.3. Path MTU Discovery and Packet Size .........................6
      4.4. ICMP for the Internet Protocol Version 6 (IPv6) -
           RFC 2463 ...................................................7
      4.5. Addressing .................................................7
      4.6. Multicast Listener Discovery (MLD) for IPv6 - RFC 2710 .....8
   5. DNS and DHCP ....................................................8
      5.1. DNS ........................................................8

      5.2. Dynamic Host Configuration Protocol for IPv6
           (DHCPv6) - RFC 3315 ........................................9
   6. IPv4 Support and Transition ....................................10
      6.1. Transition Mechanisms .....................................10
   7. Mobile IP ......................................................10
   8. Security .......................................................10
      8.1. Basic Architecture ........................................10
      8.2. Security Protocols ........................................11
      8.3. Transforms and Algorithms .................................11
      8.4. Key Management Methods ....................................12
   9. Router-Specific Functionality ..................................12
      9.1. General ...................................................12
   10. Network Management ............................................12
      10.1. Management Information Base Modules (MIBs) ...............12
   11. Security Considerations .......................................13
   12. References ....................................................13
      12.1. Normative References .....................................13
      12.2. Informative References ...................................16
   13. Authors and Acknowledgements ..................................18

1.  Introduction

   The goal of this document is to define the common functionality
   required from both IPv6 hosts and routers.  Many IPv6 nodes will
   implement optional or additional features, but this document
   summarizes requirements from other published Standards Track
   documents in one place.

   This document tries to avoid discussion of protocol details, and
   references RFCs for this purpose.  This document is informational in
   nature and does not update Standards Track RFCs.

   Although the document points to different specifications, it should
   be noted that in most cases, the granularity of requirements are
   smaller than a single specification, as many specifications define
   multiple, independent pieces, some of which may not be mandatory.

   As it is not always possible for an implementer to know the exact
   usage of IPv6 in a node, an overriding requirement for IPv6 nodes is
   that they should adhere to Jon Postel's Robustness Principle:

      Be conservative in what you do, be liberal in what you accept from
      others [RFC-793].

1.1.  Requirement Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC-2119].

1.2.  Scope of This Document

   IPv6 covers many specifications.  It is intended that IPv6 will be
   deployed in many different situations and environments.  Therefore,
   it is important to develop the requirements for IPv6 nodes to ensure
   interoperability.

   This document assumes that all IPv6 nodes meet the minimum
   requirements specified here.

1.3.  Description of IPv6 Nodes

   From the Internet Protocol, Version 6 (IPv6) Specification
   [RFC-2460], we have the following definitions:

      Description of an IPv6 Node

         -  a device that implements IPv6.

      Description of an IPv6 router

         -  a node that forwards IPv6 packets not explicitly addressed
            to itself.

      Description of an IPv6 Host

      -  any node that is not a router.

2.  Abbreviations Used in This Document

   ATM   Asynchronous Transfer Mode

   AH    Authentication Header

   DAD   Duplicate Address Detection

   ESP   Encapsulating Security Payload

   ICMP  Internet Control Message Protocol

   IKE   Internet Key Exchange

   MIB   Management Information Base

   MLD   Multicast Listener Discovery

   MTU   Maximum Transfer Unit

   NA    Neighbor Advertisement

   NBMA  Non-Broadcast Multiple Access

   ND    Neighbor Discovery

   NS    Neighbor Solicitation

   NUD   Neighbor Unreachability Detection

   PPP   Point-to-Point Protocol

   PVC   Permanent Virtual Circuit

   SVC   Switched Virtual Circuit

3.  Sub-IP Layer

   An IPv6 node must include support for one or more IPv6 link-layer
   specifications.  Which link-layer specifications are included will
   depend upon what link-layers are supported by the hardware available
   on the system.  It is possible for a conformant IPv6 node to support
   IPv6 on some of its interfaces and not on others.

   As IPv6 is run over new layer 2 technologies, it is expected that new
   specifications will be issued.  This section highlights some major
   layer 2 technologies and is not intended to be complete.

3.1.  Transmission of IPv6 Packets over Ethernet Networks - RFC 2464

   Nodes supporting IPv6 over Ethernet interfaces MUST implement
   Transmission of IPv6 Packets over Ethernet Networks [RFC-2464].

3.2.  IP version 6 over PPP - RFC 2472

   Nodes supporting IPv6 over PPP MUST implement IPv6 over PPP
   [RFC-2472].

3.3.  IPv6 over ATM Networks - RFC 2492

   Nodes supporting IPv6 over ATM Networks MUST implement IPv6 over ATM
   Networks [RFC-2492].  Additionally, RFC 2492 states:

      A minimally conforming IPv6/ATM driver SHALL support the PVC mode
      of operation.  An IPv6/ATM driver that supports the full SVC mode
      SHALL also support PVC mode of operation.

4.  IP Layer

4.1.  Internet Protocol Version 6 - RFC 2460

   The Internet Protocol Version 6 is specified in [RFC-2460].  This
   specification MUST be supported.

   Unrecognized options in Hop-by-Hop Options or Destination Options
   extensions MUST be processed as described in RFC 2460.

   The node MUST follow the packet transmission rules in RFC 2460.

   Nodes MUST always be able to send, receive, and process fragment
   headers.  All conformant IPv6 implementations MUST be capable of
   sending and receiving IPv6 packets; the forwarding functionality MAY
   be supported.

   RFC 2460 specifies extension headers and the processing for these
   headers.

      A full implementation of IPv6 includes implementation of the
      following extension headers: Hop-by-Hop Options, Routing (Type 0),
      Fragment, Destination Options, Authentication and Encapsulating
      Security Payload [RFC-2460].

   An IPv6 node MUST be able to process these headers.  It should be
   noted that there is some discussion about the use of Routing Headers
   and possible security threats [IPv6-RH] that they cause.

4.2.  Neighbor Discovery for IPv6 - RFC 2461

   Neighbor Discovery SHOULD be supported.  [RFC-2461] states:

      "Unless specified otherwise (in a document that covers operating
      IP over a particular link type) this document applies to all link
      types.  However, because ND uses link-layer multicast for some of
      its services, it is possible that on some link types (e.g., NBMA
      links) alternative protocols or mechanisms to implement those
      services will be specified (in the appropriate document covering
      the operation of IP over a particular link type).  The services
      described in this document that are not directly dependent on
      multicast, such as Redirects, Next-hop determination, Neighbor
      Unreachability Detection, etc., are expected to be provided as

      specified in this document.  The details of how one uses ND on
      NBMA links is an area for further study."

   Some detailed analysis of Neighbor Discovery follows:

   Router Discovery is how hosts locate routers that reside on an
   attached link.  Router Discovery MUST be supported for
   implementations.

   Prefix Discovery is how hosts discover the set of address prefixes
   that define which destinations are on-link for an attached link.
   Prefix discovery MUST be supported for implementations.  Neighbor
   Unreachability Detection (NUD) MUST be supported for all paths
   between hosts and neighboring nodes.  It is not required for paths
   between routers.  However, when a node receives a unicast Neighbor
   Solicitation (NS) message (that may be a NUD's NS), the node MUST
   respond to it (i.e., send a unicast Neighbor Advertisement).

   Duplicate Address Detection MUST be supported on all links supporting
   link-layer multicast (RFC 2462, Section 5.4, specifies DAD MUST take
   place on all unicast addresses).

   A host implementation MUST support sending Router Solicitations.

   Receiving and processing Router Advertisements MUST be supported for
   host implementations.  The ability to understand specific Router
   Advertisement options is dependent on supporting the specification
   where the RA is specified.

   Sending and Receiving Neighbor Solicitation (NS) and Neighbor
   Advertisement (NA) MUST be supported.  NS and NA messages are
   required for Duplicate Address Detection (DAD).

   Redirect functionality SHOULD be supported.  If the node is a router,
   Redirect functionality MUST be supported.

4.3.  Path MTU Discovery and Packet Size

4.3.1.  Path MTU Discovery - RFC 1981

   Path MTU Discovery [RFC-1981] SHOULD be supported, though minimal
   implementations MAY choose to not support it and avoid large packets.
   The rules in RFC 2460 MUST be followed for packet fragmentation and
   reassembly.

4.3.2.  IPv6 Jumbograms - RFC 2675

   IPv6 Jumbograms [RFC-2675] MAY be supported.

4.4.  ICMP for the Internet Protocol Version 6 (IPv6) - RFC 2463

   ICMPv6 [RFC-2463] MUST be supported.

4.5.  Addressing

4.5.1.  IP Version 6 Addressing Architecture - RFC 3513

   The IPv6 Addressing Architecture [RFC-3513] MUST be supported as
   updated by [RFC-3879].

4.5.2.  IPv6 Stateless Address Autoconfiguration - RFC 2462

   IPv6 Stateless Address Autoconfiguration is defined in [RFC-2462].
   This specification MUST be supported for nodes that are hosts.
   Static address can be supported as well.

   Nodes that are routers MUST be able to generate link local addresses
   as described in RFC 2462 [RFC-2462].

   From 2462:

      The autoconfiguration process specified in this document applies
      only to hosts and not routers.  Since host autoconfiguration uses
      information advertised by routers, routers will need to be
      configured by some other means.  However, it is expected that
      routers will generate link-local addresses using the mechanism
      described in this document.  In addition, routers are expected to
      successfully pass the Duplicate Address Detection procedure
      described in this document on all addresses prior to assigning
      them to an interface.

   Duplicate Address Detection (DAD) MUST be supported.

4.5.3.  Privacy Extensions for Address Configuration in IPv6 - RFC 3041

   Privacy Extensions for Stateless Address Autoconfiguration [RFC-3041]
   SHOULD be supported.  It is recommended that this behavior be
   configurable on a connection basis within each application when
   available.  It is noted that a number of applications do not work
   with addresses generated with this method, while other applications
   work quite well with them.

4.5.4.  Default Address Selection for IPv6 - RFC 3484

   The rules specified in the Default Address Selection for IPv6
   [RFC-3484] document MUST be implemented.  It is expected that IPv6
   nodes will need to deal with multiple addresses.

4.5.5.  Stateful Address Autoconfiguration

   Stateful Address Autoconfiguration MAY be supported.  DHCPv6
   [RFC-3315] is the standard stateful address configuration protocol;
   see Section 5.3 for DHCPv6 support.

   Nodes which do not support Stateful Address Autoconfiguration may be
   unable to obtain any IPv6 addresses, aside from link-local addresses,
   when it receives a router advertisement with the 'M' flag (Managed
   address configuration) set and that contains no prefixes advertised
   for Stateless Address Autoconfiguration (see Section 4.5.2).
   Additionally, such nodes will be unable to obtain other configuration
   information, such as the addresses of DNS servers when it is
   connected to a link over which the node receives a router
   advertisement in which the 'O' flag ("Other stateful configuration")
   is set.

4.6.  Multicast Listener Discovery (MLD) for IPv6 - RFC 2710

   Nodes that need to join multicast groups SHOULD implement MLDv2
   [RFC-3810].  However, if the node has applications that only need
   support for Any-Source Multicast [RFC-3569], the node MAY implement
   MLDv1 [RFC-2710] instead.  If the node has applications that need
   support for Source-Specific Multicast [RFC-3569, SSM-ARCH], the node
   MUST support MLDv2 [RFC-3810].

   When MLD is used, the rules in the "Source Address Selection for the
   Multicast Listener Discovery (MLD) Protocol" [RFC-3590] MUST be
   followed.

5.  DNS and DHCP

5.1.  DNS

   DNS is described in [RFC-1034], [RFC-1035], [RFC-3152], [RFC-3363],
   and [RFC-3596].  Not all nodes will need to resolve names; those that
   will never need to resolve DNS names do not need to implement
   resolver functionality.  However, the ability to resolve names is a
   basic infrastructure capability that applications rely on and
   generally needs to be supported.  All nodes that need to resolve
   names SHOULD implement stub-resolver [RFC-1034] functionality, as in
   RFC 1034, Section 5.3.1, with support for:

      -  AAAA type Resource Records [RFC-3596];

      -  reverse addressing in ip6.arpa using PTR records [RFC-3152];

      -  EDNS0 [RFC-2671] to allow for DNS packet sizes larger than 512
         octets.

   Those nodes are RECOMMENDED to support DNS security extensions
   [RFC-4033], [RFC-4034], and [RFC-4035].

      Those nodes are NOT RECOMMENDED to support the experimental A6 
   Resource Records [RFC-3363].

EID 139 (Verified) is as follows:

Section: 5.1

Original Text:

   Those nodes are NOT RECOMMENDED to support the experimental A6 and
   DNAME Resource Records [RFC-3363].

Corrected Text:

   Those nodes are NOT RECOMMENDED to support the experimental A6
   Resource Records [RFC-3363].
Notes:
5.2. Dynamic Host Configuration Protocol for IPv6 (DHCPv6) - RFC 3315 5.2.1. Managed Address Configuration The method by which IPv6 nodes that use DHCP for address assignment can obtain IPv6 addresses and other configuration information upon receipt of a Router Advertisement with the 'M' flag set is described in Section 5.5.3 of RFC 2462. In addition, in the absence of a router, those IPv6 nodes that use DHCP for address assignment MUST initiate DHCP to obtain IPv6 addresses and other configuration information, as described in Section 5.5.2 of RFC 2462. Those IPv6 nodes that do not use DHCP for address assignment can ignore the 'M' flag in Router Advertisements. 5.2.2. Other Configuration Information The method by which IPv6 nodes that use DHCP to obtain other configuration information can obtain other configuration information upon receipt of a Router Advertisement with the 'O' flag set is described in Section 5.5.3 of RFC 2462. Those IPv6 nodes that use DHCP to obtain other configuration information initiate DHCP for other configuration information upon receipt of a Router Advertisement with the 'O' flag set, as described in Section 5.5.3 of RFC 2462. Those IPv6 nodes that do not use DHCP for other configuration information can ignore the 'O' flag in Router Advertisements. An IPv6 node can use the subset of DHCP (described in [RFC-3736]) to obtain other configuration information. 5.3.3. Use of Router Advertisements in Managed Environments Nodes using the Dynamic Host Configuration Protocol for IPv6 (DHCPv6) are expected to determine their default router information and on- link prefix information from received Router Advertisements. 6. IPv4 Support and Transition IPv6 nodes MAY support IPv4. 6.1. Transition Mechanisms 6.1.1. Transition Mechanisms for IPv6 Hosts and Routers - RFC 2893 If an IPv6 node implements dual stack and tunneling, then [RFC-4213] MUST be supported. 7. Mobile IP The Mobile IPv6 [RFC-3775] specification defines requirements for the following types of nodes: - mobile nodes - correspondent nodes with support for route optimization - home agents - all IPv6 routers Hosts MAY support mobile node functionality described in Section 8.5 of [RFC-3775], including support of generic packet tunneling [RFC- 2473] and secure home agent communications [RFC-3776]. Hosts SHOULD support route optimization requirements for correspondent nodes described in Section 8.2 of [RFC-3775]. Routers SHOULD support the generic mobility-related requirements for all IPv6 routers described in Section 8.3 of [RFC-3775]. Routers MAY support the home agent functionality described in Section 8.4 of [RFC-3775], including support of [RFC-2473] and [RFC-3776]. 8. Security This section describes the specification of IPsec for the IPv6 node. 8.1. Basic Architecture Security Architecture for the Internet Protocol [RFC-4301] MUST be supported. 8.2. Security Protocols ESP [RFC-4303] MUST be supported. AH [RFC-4302] MUST be supported. 8.3. Transforms and Algorithms Current IPsec RFCs specify the support of transforms and algorithms for use with AH and ESP: NULL encryption, DES-CBC, HMAC-SHA-1-96, and HMAC-MD5-96. However, "Cryptographic Algorithm Implementation Requirements For ESP And AH" [RFC-4305] contains the current set of mandatory to implement algorithms for ESP and AH. It also specifies algorithms that should be implemented because they are likely to be promoted to mandatory at some future time. IPv6 nodes SHOULD conform to the requirements in [RFC-4305], as well as the requirements specified below. Since ESP encryption and authentication are both optional, support for the NULL encryption algorithm [RFC-2410] and the NULL authentication algorithm [RFC-4303] MUST be provided to maintain consistency with the way these services are negotiated. However, while authentication and encryption can each be NULL, they MUST NOT both be NULL. The NULL encryption algorithm is also useful for debugging. The DES-CBC encryption algorithm [RFC-2405] SHOULD NOT be supported within ESP. Security issues related to the use of DES are discussed in [DESDIFF], [DESINT], and [DESCRACK]. DES-CBC is still listed as required by the existing IPsec RFCs, but updates to these RFCs will be published in the near future. DES provides 56 bits of protection, which is no longer considered sufficient. The use of the HMAC-SHA-1-96 algorithm [RFC-2404] within AH and ESP MUST be supported. The use of the HMAC-MD5-96 algorithm [RFC-2403] within AH and ESP MAY also be supported. The 3DES-CBC encryption algorithm [RFC-2451] does not suffer from the same security issues as DES-CBC, and the 3DES-CBC algorithm within ESP MUST be supported to ensure interoperability. The AES-128-CBC algorithm [RFC-3602] MUST also be supported within ESP. AES-128 is expected to be a widely available, secure, and efficient algorithm. While AES-128-CBC is not required by the current IPsec RFCs, it is expected to become required in the future. 8.4. Key Management Methods An implementation MUST support the manual configuration of the security key and SPI. The SPI configuration is needed in order to delineate between multiple keys. Key management SHOULD be supported. Examples of key management systems include IKEv2 [RFC-4306] and Kerberos; S/MIME and TLS include key management functions. Where key refresh, anti-replay features of AH and ESP, or on-demand creation of Security Associations (SAs) is required, automated keying MUST be supported. Key management methods for multicast traffic are also being worked on by the MSEC WG. 9. Router-Specific Functionality This section defines general host considerations for IPv6 nodes that act as routers. Currently, this section does not discuss routing- specific requirements. 9.1. General 9.1.1. IPv6 Router Alert Option - RFC 2711 The IPv6 Router Alert Option [RFC-2711] is an optional IPv6 Hop-by- Hop Header that is used in conjunction with some protocols (e.g., RSVP [RFC-2205] or MLD [RFC-2710]). The Router Alert option will need to be implemented whenever protocols that mandate its usage are implemented. See Section 4.6. 9.1.2. Neighbor Discovery for IPv6 - RFC 2461 Sending Router Advertisements and processing Router Solicitation MUST be supported. 10. Network Management Network Management MAY be supported by IPv6 nodes. However, for IPv6 nodes that are embedded devices, network management may be the only possible way of controlling these nodes. 10.1. Management Information Base Modules (MIBs) The following two MIBs SHOULD be supported by nodes that support an SNMP agent. 10.1.1. IP Forwarding Table MIB IP Forwarding Table MIB [RFC-4292] SHOULD be supported by nodes that support an SNMP agent. 10.1.2. Management Information Base for the Internet Protocol (IP) IP MIB [RFC-4293] SHOULD be supported by nodes that support an SNMP agent. 11. Security Considerations This document does not affect the security of the Internet, but implementations of IPv6 are expected to support a minimum set of security features to ensure security on the Internet. "IP Security Document Roadmap" [RFC-2411] is important for everyone to read. The security considerations in RFC 2460 state the following: The security features of IPv6 are described in the Security Architecture for the Internet Protocol [RFC-2401]. RFC 2401 has been obsoleted by RFC 4301, therefore refer RFC 4301 for the security features of IPv6. 12. References 12.1. Normative References [RFC-1035] Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, November 1987. [RFC-1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery for IP version 6", RFC 1981, August 1996. [RFC-2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, February 1997. [RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC-2403] Madson, C. and R. Glenn, "The Use of HMAC-MD5-96 within ESP and AH", RFC 2403, November 1998. [RFC-2404] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and AH", RFC 2404, November 1998. [RFC-2405] Madson, C. and N. Doraswamy, "The ESP DES-CBC Cipher Algorithm With Explicit IV", RFC 2405, November 1998. [RFC-2410] Glenn, R. and S. Kent, "The NULL Encryption Algorithm and Its Use With IPsec", RFC 2410, November 1998. [RFC-2411] Thayer, R., Doraswamy, N., and R. Glenn, "IP Security Document Roadmap", RFC 2411, November 1998. [RFC-2451] Pereira, R. and R. Adams, "The ESP CBC-Mode Cipher Algorithms", RFC 2451, November 1998. [RFC-2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998. [RFC-2461] Narten, T., Nordmark, E., and W. Simpson, "Neighbor Discovery for IP Version 6 (IPv6)", RFC 2461, December 1998. [RFC-2462] Thomson, S. and T. Narten, "IPv6 Stateless Address Autoconfiguration", RFC 2462, December 1998. [RFC-2463] Conta, A. and S. Deering, "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", RFC 2463, December 1998. [RFC-2472] Haskin, D. and E. Allen, "IP Version 6 over PPP", RFC 2472, December 1998. [RFC-2473] Conta, A. and S. Deering, "Generic Packet Tunneling in IPv6 Specification", RFC 2473, December 1998. [RFC-2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)", RFC 2671, August 1999. [RFC-2710] Deering, S., Fenner, W., and B. Haberman, "Multicast Listener Discovery (MLD) for IPv6", RFC 2710, October 1999. [RFC-2711] Partridge, C. and A. Jackson, "IPv6 Router Alert Option", RFC 2711, October 1999. [RFC-3041] Narten, T. and R. Draves, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", RFC 3041, January 2001. [RFC-3152] Bush, R., "Delegation of IP6.ARPA", BCP 49, RFC 3152, August 2001. [RFC-3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., and M. Carney, "Dynamic Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003. [RFC-3363] Bush, R., Durand, A., Fink, B., Gudmundsson, O., and T. Hain, "Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name System (DNS)", RFC 3363, August 2002. [RFC-3484] Frye, R., Levi, D., Routhier, S., and B. Wijnen, "Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework", BCP 74, RFC 3584, August 2003. [RFC-3513] Hinden, R. and S. Deering, "Internet Protocol Version 6 (IPv6) Addressing Architecture", RFC 3513, April 2003. [RFC-3590] Haberman, B., "Source Address Selection for the Multicast Listener Discovery (MLD) Protocol", RFC 3590, September 2003. [RFC-3596] Thomson, S., Huitema, C., Ksinant, V., and M. Souissi, "DNS Extensions to Support IP Version 6", RFC 3596, October 2003. [RFC-3602] Frankel, S., Glenn, R., and S. Kelly, "The AES-CBC Cipher Algorithm and Its Use with IPsec", RFC 3602, September 2003. [RFC-3775] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in IPv6", RFC 3775, June 2004. [RFC-3776] Arkko, J., Devarapalli, V., and F. Dupont, "Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents", RFC 3776, June 2004. [RFC-3810] Vida, R. and L. Costa, "Multicast Listener Discovery Version 2 (MLDv2) for IPv6", RFC 3810, June 2004. [RFC-3879] Huitema, C. and B. Carpenter, "Deprecating Site Local Addresses", RFC 3879, September 2004. [RFC-4292] Haberman, B., "IP Forwarding Table MIB", RFC 4292, April 2006. [RFC-4293] Routhier, S., Ed., "Management Information Base for the Internet Protocol (IP)", RFC 4293, April 2006. [RFC-4301] Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 4301, December 2005. [RFC-4302] Kent, S., "IP Authentication Header", RFC 4302, December 2005. [RFC-4303] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, December 2005. [RFC-4305] Eastlake 3rd, D., "Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)", RFC 4305, December 2005. 12.2. Informative References [DESDIFF] Biham, E., Shamir, A., "Differential Cryptanalysis of DES-like cryptosystems", Journal of Cryptology Vol 4, Jan 1991. [DESCRACK] Cracking DES, O'Reilly & Associates, Sebastapol, CA 2000. [DESINT] Bellovin, S., "An Issue With DES-CBC When Used Without Strong Integrity", Proceedings of the 32nd IETF, Danvers, MA, April 1995. [IPv6-RH] P. Savola, "Security of IPv6 Routing Header and Home Address Options", Work in Progress. [RFC-793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981. [RFC-1034] Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, November 1987. [RFC-2205] Braden, R., Zhang, L., Berson, S., Herzog, S., and S. Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification", RFC 2205, September 1997. [RFC-2464] Crawford, M., "Transmission of IPv6 Packets over Ethernet Networks", RFC 2464, December 1998. [RFC-2492] Armitage, G., Schulter, P., and M. Jork, "IPv6 over ATM Networks", RFC 2492, January 1999. [RFC-2675] Borman, D., Deering, S., and R. Hinden, "IPv6 Jumbograms", RFC 2675, August 1999. [RFC-4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms for IPv6 Hosts and Routers", RFC 4213, October 2005. [RFC-3569] Bhattacharyya, S., "An Overview of Source-Specific Multicast (SSM)", RFC 3569, July 2003. [RFC-3736] Droms, R., "Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6", RFC 3736, April 2004. [RFC-4001] Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder, "Textual Conventions for Internet Network Addresses", RFC 4001, February 2005. [RFC-4033] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "DNS Security Introduction and Requirements", RFC 4033, March 2005. [RFC-4034] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Resource Records for the DNS Security Extensions", RFC 4034, March 2005. [RFC-4035] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Protocol Modifications for the DNS Security Extensions", RFC 4035, March 2005. [RFC-4306] Kaufman, C., Ed., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005. [SSM-ARCH] H. Holbrook, B. Cain, "Source-Specific Multicast for IP", Work in Progress. 13. Authors and Acknowledgements This document was written by the IPv6 Node Requirements design team: Jari Arkko [[email protected]] Marc Blanchet [[email protected]] Samita Chakrabarti [[email protected]] Alain Durand [[email protected]] Gerard Gastaud [[email protected]] Jun-ichiro itojun Hagino [[email protected]] Atsushi Inoue [[email protected]] Masahiro Ishiyama [[email protected]] John Loughney [[email protected]] Rajiv Raghunarayan [[email protected]] Shoichi Sakane [[email protected]] Dave Thaler [[email protected]] Juha Wiljakka [[email protected]] The authors would like to thank Ran Atkinson, Jim Bound, Brian Carpenter, Ralph Droms, Christian Huitema, Adam Machalek, Thomas Narten, Juha Ollila, and Pekka Savola for their comments. Editor's Contact Information Comments or questions regarding this document should be sent to the IPv6 Working Group mailing list ([email protected]) or to: John Loughney Nokia Research Center Itamerenkatu 11-13 00180 Helsinki Finland Phone: +358 50 483 6242 EMail: [email protected] Full Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at [email protected]. Acknowledgement Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).