This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 1633, EID 2838, EID 4493, EID 5369
Network Working Group                                    Y. Rekhter, Ed.
Request for Comments: 4271                                    T. Li, Ed.
Obsoletes: 1771                                            S. Hares, Ed.
Category: Standards Track                                   January 2006


                  A Border Gateway Protocol 4 (BGP-4)

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   This document discusses the Border Gateway Protocol (BGP), which is
   an inter-Autonomous System routing protocol.

   The primary function of a BGP speaking system is to exchange network
   reachability information with other BGP systems.  This network
   reachability information includes information on the list of
   Autonomous Systems (ASes) that reachability information traverses.
   This information is sufficient for constructing a graph of AS
   connectivity for this reachability from which routing loops may be
   pruned, and, at the AS level, some policy decisions may be enforced.

   BGP-4 provides a set of mechanisms for supporting Classless Inter-
   Domain Routing (CIDR).  These mechanisms include support for
   advertising a set of destinations as an IP prefix, and eliminating
   the concept of network "class" within BGP.  BGP-4 also introduces
   mechanisms that allow aggregation of routes, including aggregation of
   AS paths.

   This document obsoletes RFC 1771.

Table of Contents

   1. Introduction ....................................................4
      1.1. Definition of Commonly Used Terms ..........................4
      1.2. Specification of Requirements ..............................6
   2. Acknowledgements ................................................6
   3. Summary of Operation ............................................7
      3.1. Routes: Advertisement and Storage ..........................9
      3.2. Routing Information Base ..................................10
   4. Message Formats ................................................11
      4.1. Message Header Format .....................................12
      4.2. OPEN Message Format .......................................13
      4.3. UPDATE Message Format .....................................14
      4.4. KEEPALIVE Message Format ..................................21
      4.5. NOTIFICATION Message Format ...............................21
   5. Path Attributes ................................................23
      5.1. Path Attribute Usage ......................................25
           5.1.1. ORIGIN .............................................25
           5.1.2. AS_PATH ............................................25
           5.1.3. NEXT_HOP ...........................................26
           5.1.4. MULTI_EXIT_DISC ....................................28
           5.1.5. LOCAL_PREF .........................................29
           5.1.6. ATOMIC_AGGREGATE ...................................29
           5.1.7. AGGREGATOR .........................................30
   6. BGP Error Handling. ............................................30
      6.1. Message Header Error Handling .............................31
      6.2. OPEN Message Error Handling ...............................31
      6.3. UPDATE Message Error Handling .............................32
      6.4. NOTIFICATION Message Error Handling .......................34
      6.5. Hold Timer Expired Error Handling .........................34
      6.6. Finite State Machine Error Handling .......................35
      6.7. Cease .....................................................35
      6.8. BGP Connection Collision Detection ........................35
   7. BGP Version Negotiation ........................................36
   8. BGP Finite State Machine (FSM) .................................37
      8.1. Events for the BGP FSM ....................................38
           8.1.1. Optional Events Linked to Optional Session
                  Attributes .........................................38
           8.1.2. Administrative Events ..............................42
           8.1.3. Timer Events .......................................46
           8.1.4. TCP Connection-Based Events ........................47
           8.1.5. BGP Message-Based Events ...........................49
      8.2. Description of FSM ........................................51
           8.2.1. FSM Definition .....................................51
                  8.2.1.1. Terms "active" and "passive" ..............52
                  8.2.1.2. FSM and Collision Detection ...............52
                  8.2.1.3. FSM and Optional Session Attributes .......52
                  8.2.1.4. FSM Event Numbers .........................53

                  8.2.1.5. FSM Actions that are Implementation
                           Dependent .................................53
           8.2.2. Finite State Machine ...............................53
   9. UPDATE Message Handling ........................................75
      9.1. Decision Process ..........................................76
           9.1.1. Phase 1: Calculation of Degree of Preference .......77
           9.1.2. Phase 2: Route Selection ...........................77
                  9.1.2.1. Route Resolvability Condition .............79
                  9.1.2.2. Breaking Ties (Phase 2) ...................80
           9.1.3. Phase 3: Route Dissemination .......................82
           9.1.4. Overlapping Routes .................................83
      9.2. Update-Send Process .......................................84
           9.2.1. Controlling Routing Traffic Overhead ...............85
                  9.2.1.1. Frequency of Route Advertisement ..........85
                  9.2.1.2. Frequency of Route Origination ............85
           9.2.2. Efficient Organization of Routing Information ......86
                  9.2.2.1. Information Reduction .....................86
                  9.2.2.2. Aggregating Routing Information ...........87
      9.3. Route Selection Criteria ..................................89
      9.4. Originating BGP routes ....................................89
   10. BGP Timers ....................................................90
   Appendix A.  Comparison with RFC 1771 .............................92
   Appendix B.  Comparison with RFC 1267 .............................93
   Appendix C.  Comparison with RFC 1163 .............................93
   Appendix D.  Comparison with RFC 1105 .............................94
   Appendix E.  TCP Options that May Be Used with BGP ................94
   Appendix F.  Implementation Recommendations .......................95
                Appendix F.1.  Multiple Networks Per Message .........95
                Appendix F.2.  Reducing Route Flapping ...............96
                Appendix F.3.  Path Attribute Ordering ...............96
                Appendix F.4.  AS_SET Sorting ........................96
                Appendix F.5.  Control Over Version Negotiation ......96
                Appendix F.6.  Complex AS_PATH Aggregation ...........96
   Security Considerations ...........................................97
   IANA Considerations ...............................................99
   Normative References .............................................101
   Informative References ...........................................101

1.  Introduction

   The Border Gateway Protocol (BGP) is an inter-Autonomous System
   routing protocol.

   The primary function of a BGP speaking system is to exchange network
   reachability information with other BGP systems.  This network
   reachability information includes information on the list of
   Autonomous Systems (ASes) that reachability information traverses.
   This information is sufficient for constructing a graph of AS
   connectivity for this reachability, from which routing loops may be
   pruned and, at the AS level, some policy decisions may be enforced.

   BGP-4 provides a set of mechanisms for supporting Classless Inter-
   Domain Routing (CIDR) [RFC1518, RFC1519].  These mechanisms include
   support for advertising a set of destinations as an IP prefix and
   eliminating the concept of network "class" within BGP.  BGP-4 also
   introduces mechanisms that allow aggregation of routes, including
   aggregation of AS paths.

   Routing information exchanged via BGP supports only the destination-
   based forwarding paradigm, which assumes that a router forwards a
   packet based solely on the destination address carried in the IP
   header of the packet.  This, in turn, reflects the set of policy
   decisions that can (and cannot) be enforced using BGP.  BGP can
   support only those policies conforming to the destination-based
   forwarding paradigm.

1.1.  Definition of Commonly Used Terms

   This section provides definitions for terms that have a specific
   meaning to the BGP protocol and that are used throughout the text.

   Adj-RIB-In
      The Adj-RIBs-In contains unprocessed routing information that has
      been advertised to the local BGP speaker by its peers.

   Adj-RIB-Out
      The Adj-RIBs-Out contains the routes for advertisement to specific
      peers by means of the local speaker's UPDATE messages.

   Autonomous System (AS)
      The classic definition of an Autonomous System is a set of routers
      under a single technical administration, using an interior gateway
      protocol (IGP) and common metrics to determine how to route
      packets within the AS, and using an inter-AS routing protocol to
      determine how to route packets to other ASes.  Since this classic
      definition was developed, it has become common for a single AS to

      use several IGPs and, sometimes, several sets of metrics within an
      AS.  The use of the term Autonomous System stresses the fact that,
      even when multiple IGPs and metrics are used, the administration
      of an AS appears to other ASes to have a single coherent interior
      routing plan, and presents a consistent picture of the
      destinations that are reachable through it.

   BGP Identifier
      A 4-octet unsigned integer that indicates the BGP Identifier of
      the sender of BGP messages.  A given BGP speaker sets the value of
      its BGP Identifier to an IP address assigned to that BGP speaker.
      The value of the BGP Identifier is determined upon startup and is
      the same for every local interface and BGP peer.

   BGP speaker
      A router that implements BGP.

   EBGP
      External BGP (BGP connection between external peers).

   External peer
      Peer that is in a different Autonomous System than the local
      system.

   Feasible route
      An advertised route that is available for use by the recipient.

   IBGP
      Internal BGP (BGP connection between internal peers).

   Internal peer
      Peer that is in the same Autonomous System as the local system.

   IGP
      Interior Gateway Protocol - a routing protocol used to exchange
      routing information among routers within a single Autonomous
      System.

   Loc-RIB
      The Loc-RIB contains the routes that have been selected by the
      local BGP speaker's Decision Process.

   NLRI
      Network Layer Reachability Information.

   Route
      A unit of information that pairs a set of destinations with the
      attributes of a path to those destinations.  The set of

      destinations are systems whose IP addresses are contained in one
      IP address prefix carried in the Network Layer Reachability
      Information (NLRI) field of an UPDATE message.  The path is the
      information reported in the path attributes field of the same
      UPDATE message.

   RIB
      Routing Information Base.

   Unfeasible route
      A previously advertised feasible route that is no longer available
      for use.

1.2.  Specification of Requirements

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Acknowledgements

   This document was originally published as [RFC1267] in October 1991,
   jointly authored by Kirk Lougheed and Yakov Rekhter.

   We would like to express our thanks to Guy Almes, Len Bosack, and
   Jeffrey C. Honig for their contributions to the earlier version
   (BGP-1) of this document.

   We would like to specially acknowledge numerous contributions by
   Dennis Ferguson to the earlier version of this document.

   We would like to explicitly thank Bob Braden for the review of the
   earlier version (BGP-2) of this document, and for his constructive
   and valuable comments.

   We would also like to thank Bob Hinden, Director for Routing of the
   Internet Engineering Steering Group, and the team of reviewers he
   assembled to review the earlier version (BGP-2) of this document.
   This team, consisting of Deborah Estrin, Milo Medin, John Moy, Radia
   Perlman, Martha Steenstrup, Mike St. Johns, and Paul Tsuchiya, acted
   with a strong combination of toughness, professionalism, and
   courtesy.

   Certain sections of the document borrowed heavily from IDRP
   [IS10747], which is the OSI counterpart of BGP.  For this, credit
   should be given to the ANSI X3S3.3 group chaired by Lyman Chapin and
   to Charles Kunzinger, who was the IDRP editor within that group.

   We would also like to thank Benjamin Abarbanel, Enke Chen, Edward
   Crabbe, Mike Craren, Vincent Gillet, Eric Gray, Jeffrey Haas, Dimitry
   Haskin, Stephen Kent, John Krawczyk, David LeRoy, Dan Massey,
   Jonathan Natale, Dan Pei, Mathew Richardson, John Scudder, John
   Stewart III, Dave Thaler, Paul Traina, Russ White, Curtis Villamizar,
   and Alex Zinin for their comments.

   We would like to specially acknowledge Andrew Lange for his help in
   preparing the final version of this document.

   Finally, we would like to thank all the members of the IDR Working
   Group for their ideas and the support they have given to this
   document.

3.  Summary of Operation

   The Border Gateway Protocol (BGP) is an inter-Autonomous System
   routing protocol.  It is built on experience gained with EGP (as
   defined in [RFC904]) and EGP usage in the NSFNET Backbone (as
   described in [RFC1092] and [RFC1093]).  For more BGP-related
   information, see [RFC1772], [RFC1930], [RFC1997], and [RFC2858].

   The primary function of a BGP speaking system is to exchange network
   reachability information with other BGP systems.  This network
   reachability information includes information on the list of
   Autonomous Systems (ASes) that reachability information traverses.
   This information is sufficient for constructing a graph of AS
   connectivity, from which routing loops may be pruned, and, at the AS
   level, some policy decisions may be enforced.

   In the context of this document, we assume that a BGP speaker
   advertises to its peers only those routes that it uses itself (in
   this context, a BGP speaker is said to "use" a BGP route if it is the
   most preferred BGP route and is used in forwarding).  All other cases
   are outside the scope of this document.

   In the context of this document, the term "IP address" refers to an
   IP Version 4 address [RFC791].

   Routing information exchanged via BGP supports only the destination-
   based forwarding paradigm, which assumes that a router forwards a
   packet based solely on the destination address carried in the IP
   header of the packet.  This, in turn, reflects the set of policy
   decisions that can (and cannot) be enforced using BGP.  Note that
   some policies cannot be supported by the destination-based forwarding
   paradigm, and thus require techniques such as source routing (aka
   explicit routing) to be enforced.  Such policies cannot be enforced
   using BGP either.  For example, BGP does not enable one AS to send

   traffic to a neighboring AS for forwarding to some destination
   (reachable through but) beyond that neighboring AS, intending that
   the traffic take a different route to that taken by the traffic
   originating in the neighboring AS (for that same destination).  On
   the other hand, BGP can support any policy conforming to the
   destination-based forwarding paradigm.

   BGP-4 provides a new set of mechanisms for supporting Classless
   Inter-Domain Routing (CIDR) [RFC1518, RFC1519].  These mechanisms
   include support for advertising a set of destinations as an IP prefix
   and eliminating the concept of a network "class" within BGP.  BGP-4
   also introduces mechanisms that allow aggregation of routes,
   including aggregation of AS paths.

   This document uses the term `Autonomous System' (AS) throughout.  The
   classic definition of an Autonomous System is a set of routers under
   a single technical administration, using an interior gateway protocol
   (IGP) and common metrics to determine how to route packets within the
   AS, and using an inter-AS routing protocol to determine how to route
   packets to other ASes.  Since this classic definition was developed,
   it has become common for a single AS to use several IGPs and,
   sometimes, several sets of metrics within an AS.  The use of the term
   Autonomous System stresses the fact that, even when multiple IGPs and
   metrics are used, the administration of an AS appears to other ASes
   to have a single coherent interior routing plan and presents a
   consistent picture of the destinations that are reachable through it.

   BGP uses TCP [RFC793] as its transport protocol.  This eliminates the
   need to implement explicit update fragmentation, retransmission,
   acknowledgement, and sequencing.  BGP listens on TCP port 179.  The
   error notification mechanism used in BGP assumes that TCP supports a
   "graceful" close (i.e., that all outstanding data will be delivered
   before the connection is closed).

   A TCP connection is formed between two systems.  They exchange
   messages to open and confirm the connection parameters.

   The initial data flow is the portion of the BGP routing table that is
   allowed by the export policy, called the Adj-Ribs-Out (see 3.2).
   Incremental updates are sent as the routing tables change.  BGP does
   not require a periodic refresh of the routing table.  To allow local
   policy changes to have the correct effect without resetting any BGP
   connections, a BGP speaker SHOULD either (a) retain the current
   version of the routes advertised to it by all of its peers for the
   duration of the connection, or (b) make use of the Route Refresh
   extension [RFC2918].

   KEEPALIVE messages may be sent periodically to ensure that the
   connection is live.  NOTIFICATION messages are sent in response to
   errors or special conditions.  If a connection encounters an error
   condition, a NOTIFICATION message is sent and the connection is
   closed.

   A peer in a different AS is referred to as an external peer, while a
   peer in the same AS is referred to as an internal peer.  Internal BGP
   and external BGP are commonly abbreviated as IBGP and EBGP.

   If a particular AS has multiple BGP speakers and is providing transit
   service for other ASes, then care must be taken to ensure a
   consistent view of routing within the AS.  A consistent view of the
   interior routes of the AS is provided by the IGP used within the AS.
   For the purpose of this document, it is assumed that a consistent
   view of the routes exterior to the AS is provided by having all BGP
   speakers within the AS maintain IBGP with each other.

   This document specifies the base behavior of the BGP protocol.  This
   behavior can be, and is, modified by extension specifications.  When
   the protocol is extended, the new behavior is fully documented in the
   extension specifications.

3.1.  Routes: Advertisement and Storage

   For the purpose of this protocol, a route is defined as a unit of
   information that pairs a set of destinations with the attributes of a
   path to those destinations.  The set of destinations are systems
   whose IP addresses are contained in one IP address prefix that is
   carried in the Network Layer Reachability Information (NLRI) field of
   an UPDATE message, and the path is the information reported in the
   path attributes field of the same UPDATE message.

   Routes are advertised between BGP speakers in UPDATE messages.
   Multiple routes that have the same path attributes can be advertised
   in a single UPDATE message by including multiple prefixes in the NLRI
   field of the UPDATE message.

   Routes are stored in the Routing Information Bases (RIBs): namely,
   the Adj-RIBs-In, the Loc-RIB, and the Adj-RIBs-Out, as described in
   Section 3.2.

   If a BGP speaker chooses to advertise a previously received route, it
   MAY add to, or modify, the path attributes of the route before
   advertising it to a peer.

   BGP provides mechanisms by which a BGP speaker can inform its peers
   that a previously advertised route is no longer available for use.
   There are three methods by which a given BGP speaker can indicate
   that a route has been withdrawn from service:

      a) the IP prefix that expresses the destination for a previously
         advertised route can be advertised in the WITHDRAWN ROUTES
         field in the UPDATE message, thus marking the associated route
         as being no longer available for use,

      b) a replacement route with the same NLRI can be advertised, or

      c) the BGP speaker connection can be closed, which implicitly
         removes all routes the pair of speakers had advertised to each
         other from service.

   Changing the attribute(s) of a route is accomplished by advertising a
   replacement route.  The replacement route carries new (changed)
   attributes and has the same address prefix as the original route.

3.2.  Routing Information Base

   The Routing Information Base (RIB) within a BGP speaker consists of
   three distinct parts:

      a) Adj-RIBs-In: The Adj-RIBs-In stores routing information learned
         from inbound UPDATE messages that were received from other BGP
         speakers.  Their contents represent routes that are available
         as input to the Decision Process.

      b) Loc-RIB: The Loc-RIB contains the local routing information the
         BGP speaker selected by applying its local policies to the
         routing information contained in its Adj-RIBs-In.  These are
         the routes that will be used by the local BGP speaker.  The
         next hop for each of these routes MUST be resolvable via the
         local BGP speaker's Routing Table.

      c) Adj-RIBs-Out: The Adj-RIBs-Out stores information the local BGP
         speaker selected for advertisement to its peers.  The routing
         information stored in the Adj-RIBs-Out will be carried in the
         local BGP speaker's UPDATE messages and advertised to its
         peers.

   In summary, the Adj-RIBs-In contains unprocessed routing information
   that has been advertised to the local BGP speaker by its peers; the
   Loc-RIB contains the routes that have been selected by the local BGP

   speaker's Decision Process; and the Adj-RIBs-Out organizes the routes
   for advertisement to specific peers (by means of the local speaker's
   UPDATE messages).

   Although the conceptual model distinguishes between Adj-RIBs-In,
   Loc-RIB, and Adj-RIBs-Out, this neither implies nor requires that an
   implementation must maintain three separate copies of the routing
   information.  The choice of implementation (for example, 3 copies of
   the information vs 1 copy with pointers) is not constrained by the
   protocol.

   Routing information that the BGP speaker uses to forward packets (or
   to construct the forwarding table used for packet forwarding) is
   maintained in the Routing Table.  The Routing Table accumulates
   routes to directly connected networks, static routes, routes learned
   from the IGP protocols, and routes learned from BGP.  Whether a
   specific BGP route should be installed in the Routing Table, and
   whether a BGP route should override a route to the same destination
   installed by another source, is a local policy decision, and is not
   specified in this document.  In addition to actual packet forwarding,
   the Routing Table is used for resolution of the next-hop addresses
   specified in BGP updates (see Section 5.1.3).

4.  Message Formats

   This section describes message formats used by BGP.

   BGP messages are sent over TCP connections.  A message is processed
   only after it is entirely received.  The maximum message size is 4096
   octets.  All implementations are required to support this maximum
   message size.  The smallest message that may be sent consists of a
   BGP header without a data portion (19 octets).

   All multi-octet fields are in network byte order.

4.1.  Message Header Format

   Each message has a fixed-size header.  There may or may not be a data
   portion following the header, depending on the message type.  The
   layout of these fields is shown below:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                                                               +
      |                                                               |
      +                                                               +
      |                           Marker                              |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Length               |      Type     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Marker:

         This 16-octet field is included for compatibility; it MUST be
         set to all ones.

      Length:

         This 2-octet unsigned integer indicates the total length of the
         message, including the header in octets.  Thus, it allows one
         to locate the (Marker field of the) next message in the TCP
         stream.  The value of the Length field MUST always be at least
         19 and no greater than 4096, and MAY be further constrained,
         depending on the message type.  "padding" of extra data after
         the message is not allowed.  Therefore, the Length field MUST
         have the smallest value required, given the rest of the
         message.

      Type:

         This 1-octet unsigned integer indicates the type code of the
         message.  This document defines the following type codes:

                              1 - OPEN
                              2 - UPDATE
                              3 - NOTIFICATION
                              4 - KEEPALIVE

         [RFC2918] defines one more type code.

4.2.  OPEN Message Format

   After a TCP connection is established, the first message sent by each
   side is an OPEN message.  If the OPEN message is acceptable, a
   KEEPALIVE message confirming the OPEN is sent back.

   In addition to the fixed-size BGP header, the OPEN message contains
   the following fields:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+
       |    Version    |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     My Autonomous System      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |           Hold Time           |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                         BGP Identifier                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       | Opt Parm Len  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       |             Optional Parameters (variable)                    |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Version:

         This 1-octet unsigned integer indicates the protocol version
         number of the message.  The current BGP version number is 4.

      My Autonomous System:

         This 2-octet unsigned integer indicates the Autonomous System
         number of the sender.

      Hold Time:

         This 2-octet unsigned integer indicates the number of seconds
         the sender proposes for the value of the Hold Timer.  Upon
         receipt of an OPEN message, a BGP speaker MUST calculate the
         value of the Hold Timer by using the smaller of its configured
         Hold Time and the Hold Time received in the OPEN message.  The
         Hold Time MUST be either zero or at least three seconds.  An
         implementation MAY reject connections on the basis of the Hold

         Time.  The calculated value indicates the maximum number of
         seconds that may elapse between the receipt of successive
         KEEPALIVE and/or UPDATE messages from the sender.

      BGP Identifier:

         This 4-octet unsigned integer indicates the BGP Identifier of
         the sender.  A given BGP speaker sets the value of its BGP
         Identifier to an IP address that is assigned to that BGP
         speaker.  The value of the BGP Identifier is determined upon
         startup and is the same for every local interface and BGP peer.

      Optional Parameters Length:

         This 1-octet unsigned integer indicates the total length of the
         Optional Parameters field in octets.  If the value of this
         field is zero, no Optional Parameters are present.

      Optional Parameters:

         This field contains a list of optional parameters, in which
         each parameter is encoded as a <Parameter Type, Parameter
         Length, Parameter Value> triplet.

         0                   1
         0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...
         |  Parm. Type   | Parm. Length  |  Parameter Value (variable)
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...

         Parameter Type is a one octet field that unambiguously
         identifies individual parameters.  Parameter Length is a one
         octet field that contains the length of the Parameter Value
         field in octets.  Parameter Value is a variable length field
         that is interpreted according to the value of the Parameter
         Type field.

         [RFC3392] defines the Capabilities Optional Parameter.

   The minimum length of the OPEN message is 29 octets (including the
   message header).

4.3.  UPDATE Message Format

   UPDATE messages are used to transfer routing information between BGP
   peers.  The information in the UPDATE message can be used to
   construct a graph that describes the relationships of the various
   Autonomous Systems.  By applying rules to be discussed, routing

   information loops and some other anomalies may be detected and
   removed from inter-AS routing.

   An UPDATE message is used to advertise feasible routes that share
   common path attributes to a peer, or to withdraw multiple unfeasible
   routes from service (see 3.1).  An UPDATE message MAY simultaneously
   advertise a feasible route and withdraw multiple unfeasible routes
   from service.  The UPDATE message always includes the fixed-size BGP
   header, and also includes the other fields, as shown below (note,
   some of the shown fields may not be present in every UPDATE message):

      +-----------------------------------------------------+
      |   Withdrawn Routes Length (2 octets)                |
      +-----------------------------------------------------+
      |   Withdrawn Routes (variable)                       |
      +-----------------------------------------------------+
      |   Total Path Attribute Length (2 octets)            |
      +-----------------------------------------------------+
      |   Path Attributes (variable)                        |
      +-----------------------------------------------------+
      |   Network Layer Reachability Information (variable) |
      +-----------------------------------------------------+

      Withdrawn Routes Length:

         This 2-octets unsigned integer indicates the total length of
         the Withdrawn Routes field in octets.  Its value allows the
         length of the Network Layer Reachability Information field to
         be determined, as specified below.

         A value of 0 indicates that no routes are being withdrawn from
         service, and that the WITHDRAWN ROUTES field is not present in
         this UPDATE message.

      Withdrawn Routes:

         This is a variable-length field that contains a list of IP
         address prefixes for the routes that are being withdrawn from
         service.  Each IP address prefix is encoded as a 2-tuple of the
         form <length, prefix>, whose fields are described below:

                  +---------------------------+
                  |   Length (1 octet)        |
                  +---------------------------+
                  |   Prefix (variable)       |
                  +---------------------------+

         The use and the meaning of these fields are as follows:

         a) Length:

            The Length field indicates the length in bits of the IP
            address prefix.  A length of zero indicates a prefix that
            matches all IP addresses (with prefix, itself, of zero
            octets).

         b) Prefix:

            The Prefix field contains an IP address prefix, followed by
            the minimum number of trailing bits needed to make the end
            of the field fall on an octet boundary.  Note that the value
            of trailing bits is irrelevant.

      Total Path Attribute Length:

         This 2-octet unsigned integer indicates the total length of the
         Path Attributes field in octets.  Its value allows the length
         of the Network Layer Reachability field to be determined as
         specified below.

         A value of 0 indicates that neither the Network Layer
         Reachability Information field nor the Path Attribute field is
         present in this UPDATE message.

      Path Attributes:

         A variable-length sequence of path attributes is present in
         every UPDATE message, except for an UPDATE message that carries
         only the withdrawn routes.  Each path attribute is a triple
         <attribute type, attribute length, attribute value> of variable
         length.

         Attribute Type is a two-octet field that consists of the
         Attribute Flags octet, followed by the Attribute Type Code
         octet.

               0                   1
               0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               |  Attr. Flags  |Attr. Type Code|
               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

         The high-order bit (bit 0) of the Attribute Flags octet is the
         Optional bit.  It defines whether the attribute is optional (if
         set to 1) or well-known (if set to 0).

         The second high-order bit (bit 1) of the Attribute Flags octet
         is the Transitive bit.  It defines whether an optional
         attribute is transitive (if set to 1) or non-transitive (if set
         to 0).

         For well-known attributes, the Transitive bit MUST be set to 1.
         (See Section 5 for a discussion of transitive attributes.)

         The third high-order bit (bit 2) of the Attribute Flags octet
         is the Partial bit.  It defines whether the information
         contained in the optional transitive attribute is partial (if
         set to 1) or complete (if set to 0).  For well-known attributes
         and for optional non-transitive attributes, the Partial bit
         MUST be set to 0.

         The fourth high-order bit (bit 3) of the Attribute Flags octet
         is the Extended Length bit.  It defines whether the Attribute
         Length is one octet (if set to 0) or two octets (if set to 1).

         The lower-order four bits of the Attribute Flags octet are
         unused.  They MUST be zero when sent and MUST be ignored when
         received.

         The Attribute Type Code octet contains the Attribute Type Code.
         Currently defined Attribute Type Codes are discussed in Section
         5.

         If the Extended Length bit of the Attribute Flags octet is set
         to 0, the third octet of the Path Attribute contains the length
         of the attribute data in octets.

         If the Extended Length bit of the Attribute Flags octet is set
         to 1, the third and fourth octets of the path attribute contain
         the length of the attribute data in octets.

         The remaining octets of the Path Attribute represent the
         attribute value and are interpreted according to the Attribute
         Flags and the Attribute Type Code.  The supported Attribute
         Type Codes, and their attribute values and uses are as follows:

         a) ORIGIN (Type Code 1):

            ORIGIN is a well-known mandatory attribute that defines the
            origin of the path information.  The data octet can assume
            the following values:

               Value      Meaning

               0         IGP - Network Layer Reachability Information
                            is interior to the originating AS

               1         EGP - Network Layer Reachability Information
                            learned via the EGP protocol [RFC904]

               2         INCOMPLETE - Network Layer Reachability
                            Information learned by some other means

            Usage of this attribute is defined in 5.1.1.

         b) AS_PATH (Type Code 2):

            AS_PATH is a well-known mandatory attribute that is composed
            of a sequence of AS path segments.  Each AS path segment is
            represented by a triple <path segment type, path segment
            length, path segment value>.

            The path segment type is a 1-octet length field with the
            following values defined:

               Value      Segment Type

               1         AS_SET: unordered set of ASes a route in the
                            UPDATE message has traversed

               2         AS_SEQUENCE: ordered set of ASes a route in
                            the UPDATE message has traversed

            The path segment length is a 1-octet length field,
            containing the number of ASes (not the number of octets) in
            the path segment value field.

            The path segment value field contains one or more AS
            numbers, each encoded as a 2-octet length field.

            Usage of this attribute is defined in 5.1.2.

         c) NEXT_HOP (Type Code 3):

            This is a well-known mandatory attribute that defines the
            (unicast) IP address of the router that SHOULD be used as
            the next hop to the destinations listed in the Network Layer
            Reachability Information field of the UPDATE message.

            Usage of this attribute is defined in 5.1.3.

         d) MULTI_EXIT_DISC (Type Code 4):

            This is an optional non-transitive attribute that is a
            four-octet unsigned integer.  The value of this attribute
            MAY be used by a BGP speaker's Decision Process to
            discriminate among multiple entry points to a neighboring
            autonomous system.

            Usage of this attribute is defined in 5.1.4.

         e) LOCAL_PREF (Type Code 5):

            LOCAL_PREF is a well-known attribute that is a four-octet
            unsigned integer.  A BGP speaker uses it to inform its other
            internal peers of the advertising speaker's degree of
            preference for an advertised route.

            Usage of this attribute is defined in 5.1.5.

         f) ATOMIC_AGGREGATE (Type Code 6)

            ATOMIC_AGGREGATE is a well-known discretionary attribute of
            length 0.

            Usage of this attribute is defined in 5.1.6.

         g) AGGREGATOR (Type Code 7)

            AGGREGATOR is an optional transitive attribute of length 6.
            The attribute contains the last AS number that formed the
            aggregate route (encoded as 2 octets), followed by the IP
            address of the BGP speaker that formed the aggregate route
            (encoded as 4 octets).  This SHOULD be the same address as
            the one used for the BGP Identifier of the speaker.

            Usage of this attribute is defined in 5.1.7.

      Network Layer Reachability Information:

         This variable length field contains a list of IP address
         prefixes.  The length, in octets, of the Network Layer
         Reachability Information is not encoded explicitly, but can be
         calculated as:

               UPDATE message Length - 23 - Total Path Attributes Length
               - Withdrawn Routes Length

         where UPDATE message Length is the value encoded in the fixed-
         size BGP header, Total Path Attribute Length, and Withdrawn
         Routes Length are the values encoded in the variable part of
         the UPDATE message, and 23 is a combined length of the fixed-
         size BGP header, the Total Path Attribute Length field, and the
         Withdrawn Routes Length field.

         Reachability information is encoded as one or more 2-tuples of
         the form <length, prefix>, whose fields are described below:

                  +---------------------------+
                  |   Length (1 octet)        |
                  +---------------------------+
                  |   Prefix (variable)       |
                  +---------------------------+

         The use and the meaning of these fields are as follows:

         a) Length:

            The Length field indicates the length in bits of the IP
            address prefix.  A length of zero indicates a prefix that
            matches all IP addresses (with prefix, itself, of zero
            octets).

         b) Prefix:

            The Prefix field contains an IP address prefix, followed by
            enough trailing bits to make the end of the field fall on an
            octet boundary.  Note that the value of the trailing bits is
            irrelevant.

   The minimum length of the UPDATE message is 23 octets -- 19 octets
   for the fixed header + 2 octets for the Withdrawn Routes Length + 2
   octets for the Total Path Attribute Length (the value of Withdrawn
   Routes Length is 0 and the value of Total Path Attribute Length is
   0).

   An UPDATE message can advertise, at most, one set of path attributes,
   but multiple destinations, provided that the destinations share these
   attributes.  All path attributes contained in a given UPDATE message
   apply to all destinations carried in the NLRI field of the UPDATE
   message.


   An UPDATE message can list multiple routes that are to be withdrawn
   from service.  Each such route is identified by its destination
   (expressed as an IP prefix), which unambiguously identifies the route
   in the context of the BGP speaker - BGP speaker connection to which
   it has been previously advertised.


   An UPDATE message might advertise only routes that are to be
   withdrawn from service, in which case the message will not include
   path attributes or Network Layer Reachability Information.
   Conversely, it may advertise only a feasible route, in which case the
   WITHDRAWN ROUTES field need not be present.

   An UPDATE message SHOULD NOT include the same address prefix in the
   WITHDRAWN ROUTES and Network Layer Reachability Information fields.
   However, a BGP speaker MUST be able to process UPDATE messages in
   this form.  A BGP speaker SHOULD treat an UPDATE message of this form
   as though the WITHDRAWN ROUTES do not contain the address prefix.

4.4.  KEEPALIVE Message Format

   BGP does not use any TCP-based, keep-alive mechanism to determine if
   peers are reachable.  Instead, KEEPALIVE messages are exchanged
   between peers often enough not to cause the Hold Timer to expire.  A
   reasonable maximum time between KEEPALIVE messages would be one third
   of the Hold Time interval.  KEEPALIVE messages MUST NOT be sent more
   frequently than one per second.  An implementation MAY adjust the
   rate at which it sends KEEPALIVE messages as a function of the Hold
   Time interval.

   If the negotiated Hold Time interval is zero, then periodic KEEPALIVE
   messages MUST NOT be sent.

   A KEEPALIVE message consists of only the message header and has a
   length of 19 octets.

4.5.  NOTIFICATION Message Format

   A NOTIFICATION message is sent when an error condition is detected.
   The BGP connection is closed immediately after it is sent.

   In addition to the fixed-size BGP header, the NOTIFICATION message
   contains the following fields:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Error code    | Error subcode |   Data (variable)             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Error Code:

         This 1-octet unsigned integer indicates the type of
         NOTIFICATION.  The following Error Codes have been defined:

            Error Code       Symbolic Name               Reference

              1         Message Header Error             Section 6.1

              2         OPEN Message Error               Section 6.2

              3         UPDATE Message Error             Section 6.3

              4         Hold Timer Expired               Section 6.5

              5         Finite State Machine Error       Section 6.6

              6         Cease                            Section 6.7

      Error subcode:

         This 1-octet unsigned integer provides more specific
         information about the nature of the reported error.  Each Error
         Code may have one or more Error Subcodes associated with it.
         If no appropriate Error Subcode is defined, then a zero
         (Unspecific) value is used for the Error Subcode field.

            Message Header Error subcodes: 

               0 - Unspecific.
               1 - Connection Not Synchronized.
               2 - Bad Message Length.
               3 - Bad Message Type.

      OPEN Message Error subcodes:

               0 - Unspecific.
               1 - Unsupported Version Number.
               2 - Bad Peer AS.
               3 - Bad BGP Identifier.
               4 - Unsupported Optional Parameter.
               5 - [Deprecated - see Appendix A].
               6 - Unacceptable Hold Time.

      UPDATE Message Error subcodes:

               0 - Unspecific.
               1 - Malformed Attribute List.
               2 - Unrecognized Well-known Attribute.
               3 - Missing Well-known Attribute.
               4 - Attribute Flags Error.
               5 - Attribute Length Error.
               6 - Invalid ORIGIN Attribute.
               7 - [Deprecated - see Appendix A].
               8 - Invalid NEXT_HOP Attribute.
               9 - Optional Attribute Error.
              10 - Invalid Network Field.
              11 - Malformed AS_PATH.
EID 4493 (Verified) is as follows:

Section: 4.5

Original Text:

      Message Header Error subcodes:

               1 - Connection Not Synchronized.
               2 - Bad Message Length.
               3 - Bad Message Type.

      OPEN Message Error subcodes:

               1 - Unsupported Version Number.
               2 - Bad Peer AS.
               3 - Bad BGP Identifier.
               4 - Unsupported Optional Parameter.
               5 - [Deprecated - see Appendix A].
               6 - Unacceptable Hold Time.

      UPDATE Message Error subcodes:

               1 - Malformed Attribute List.
               2 - Unrecognized Well-known Attribute.
               3 - Missing Well-known Attribute.
               4 - Attribute Flags Error.
               5 - Attribute Length Error.
               6 - Invalid ORIGIN Attribute.
               7 - [Deprecated - see Appendix A].
               8 - Invalid NEXT_HOP Attribute.
               9 - Optional Attribute Error.
              10 - Invalid Network Field.
              11 - Malformed AS_PATH.

Corrected Text:

      Message Header Error subcodes:

               0 - Unspecific.
               1 - Connection Not Synchronized.
               2 - Bad Message Length.
               3 - Bad Message Type.

      OPEN Message Error subcodes:

               0 - Unspecific.
               1 - Unsupported Version Number.
               2 - Bad Peer AS.
               3 - Bad BGP Identifier.
               4 - Unsupported Optional Parameter.
               5 - [Deprecated - see Appendix A].
               6 - Unacceptable Hold Time.

      UPDATE Message Error subcodes:

               0 - Unspecific.
               1 - Malformed Attribute List.
               2 - Unrecognized Well-known Attribute.
               3 - Missing Well-known Attribute.
               4 - Attribute Flags Error.
               5 - Attribute Length Error.
               6 - Invalid ORIGIN Attribute.
               7 - [Deprecated - see Appendix A].
               8 - Invalid NEXT_HOP Attribute.
               9 - Optional Attribute Error.
              10 - Invalid Network Field.
              11 - Malformed AS_PATH.
Notes:
RFC 4271 defines a use and a name for Error subcode 0:
- §4.5 (any error code):
If no appropriate Error Subcode is defined, then a zero
(Unspecific) value is used for the Error Subcode field.

- §6.2 (OPEN error code):
If one of the Optional Parameters in the OPEN message is recognized,
but is malformed, then the Error Subcode MUST be set to 0
(Unspecific).

The "IANA Considerations" section would also need to be updated
accordingly (says "0 Reserved”). However, IANA has corrected the
corresponding registry at http://www.iana.org/assignments/bgp-parameters.
Data: This variable-length field is used to diagnose the reason for the NOTIFICATION. The contents of the Data field depend upon the Error Code and Error Subcode. See Section 6 for more details. Note that the length of the Data field can be determined from the message Length field by the formula: Message Length = 21 + Data Length The minimum length of the NOTIFICATION message is 21 octets (including message header). 5. Path Attributes This section discusses the path attributes of the UPDATE message. Path attributes fall into four separate categories: 1. Well-known mandatory. 2. Well-known discretionary. 3. Optional transitive. 4. Optional non-transitive. BGP implementations MUST recognize all well-known attributes. Some of these attributes are mandatory and MUST be included in every UPDATE message that contains NLRI. Others are discretionary and MAY or MAY NOT be sent in a particular UPDATE message. Once a BGP peer has updated any well-known attributes, it MUST pass these attributes to its peers in any updates it transmits. In addition to well-known attributes, each path MAY contain one or more optional attributes. It is not required or expected that all BGP implementations support all optional attributes. The handling of an unrecognized optional attribute is determined by the setting of the Transitive bit in the attribute flags octet. Paths with unrecognized transitive optional attributes SHOULD be accepted. If a path with an unrecognized transitive optional attribute is accepted and passed to other BGP peers, then the unrecognized transitive optional attribute of that path MUST be passed, along with the path, to other BGP peers with the Partial bit in the Attribute Flags octet set to 1. If a path with a recognized, transitive optional attribute is accepted and passed along to other BGP peers and the Partial bit in the Attribute Flags octet is set to 1 by some previous AS, it MUST NOT be set back to 0 by the current AS. Unrecognized non-transitive optional attributes MUST be quietly ignored and not passed along to other BGP peers. New, transitive optional attributes MAY be attached to the path by the originator or by any other BGP speaker in the path. If they are not attached by the originator, the Partial bit in the Attribute Flags octet is set to 1. The rules for attaching new non-transitive optional attributes will depend on the nature of the specific attribute. The documentation of each new non-transitive optional attribute will be expected to include such rules (the description of the MULTI_EXIT_DISC attribute gives an example). All optional attributes (both transitive and non-transitive), MAY be updated (if appropriate) by BGP speakers in the path. The sender of an UPDATE message SHOULD order path attributes within the UPDATE message in ascending order of attribute type. The receiver of an UPDATE message MUST be prepared to handle path attributes within UPDATE messages that are out of order. The same attribute (attribute with the same type) cannot appear more than once within the Path Attributes field of a particular UPDATE message. The mandatory category refers to an attribute that MUST be present in both IBGP and EBGP exchanges if NLRI are contained in the UPDATE message. Attributes classified as optional for the purpose of the protocol extension mechanism may be purely discretionary, discretionary, required, or disallowed in certain contexts. attribute EBGP IBGP ORIGIN mandatory mandatory AS_PATH mandatory mandatory NEXT_HOP mandatory mandatory MULTI_EXIT_DISC discretionary discretionary LOCAL_PREF see Section 5.1.5 required ATOMIC_AGGREGATE see Section 5.1.6 and 9.1.4 AGGREGATOR discretionary discretionary 5.1. Path Attribute Usage The usage of each BGP path attribute is described in the following clauses. 5.1.1. ORIGIN ORIGIN is a well-known mandatory attribute. The ORIGIN attribute is generated by the speaker that originates the associated routing information. Its value SHOULD NOT be changed by any other speaker. 5.1.2. AS_PATH AS_PATH is a well-known mandatory attribute. This attribute identifies the autonomous systems through which routing information carried in this UPDATE message has passed. The components of this list can be AS_SETs or AS_SEQUENCEs. When a BGP speaker propagates a route it learned from another BGP speaker's UPDATE message, it modifies the route's AS_PATH attribute based on the location of the BGP speaker to which the route will be sent: a) When a given BGP speaker advertises the route to an internal peer, the advertising speaker SHALL NOT modify the AS_PATH attribute associated with the route. b) When a given BGP speaker advertises the route to an external peer, the advertising speaker updates the AS_PATH attribute as follows: 1) if the first path segment of the AS_PATH is of type AS_SEQUENCE, the local system prepends its own AS number as the last element of the sequence (put it in the leftmost position with respect to the position of octets in the protocol message). If the act of prepending will cause an overflow in the AS_PATH segment (i.e., more than 255 ASes), it SHOULD prepend a new segment of type AS_SEQUENCE and prepend its own AS number to this new segment. 2) if the first path segment of the AS_PATH is of type AS_SET, the local system prepends a new path segment of type AS_SEQUENCE to the AS_PATH, including its own AS number in that segment. 3) if the AS_PATH is empty, the local system creates a path segment of type AS_SEQUENCE, places its own AS into that segment, and places that segment into the AS_PATH. When a BGP speaker originates a route then: a) the originating speaker includes its own AS number in a path segment, of type AS_SEQUENCE, in the AS_PATH attribute of all UPDATE messages sent to an external peer. In this case, the AS number of the originating speaker's autonomous system will be the only entry the path segment, and this path segment will be the only segment in the AS_PATH attribute. b) the originating speaker includes an empty AS_PATH attribute in all UPDATE messages sent to internal peers. (An empty AS_PATH attribute is one whose length field contains the value zero). Whenever the modification of the AS_PATH attribute calls for including or prepending the AS number of the local system, the local system MAY include/prepend more than one instance of its own AS number in the AS_PATH attribute. This is controlled via local configuration. 5.1.3. NEXT_HOP The NEXT_HOP is a well-known mandatory attribute that defines the IP address of the router that SHOULD be used as the next hop to the destinations listed in the UPDATE message. The NEXT_HOP attribute is calculated as follows: 1) When sending a message to an internal peer, if the route is not locally originated, the BGP speaker SHOULD NOT modify the NEXT_HOP attribute unless it has been explicitly configured to announce its own IP address as the NEXT_HOP. When announcing a locally-originated route to an internal peer, the BGP speaker SHOULD use the interface address of the router through which the announced network is reachable for the speaker as the NEXT_HOP. If the route is directly connected to the speaker, or if the interface address of the router through which the announced network is reachable for the speaker is the internal peer's address, then the BGP speaker SHOULD use its own IP address for the NEXT_HOP attribute (the address of the interface that is used to reach the peer). 2) When sending a message to an external peer, X, and the peer is one IP hop away from the speaker: - If the route being announced was learned from an internal peer or is locally originated, the BGP speaker can use an interface address of the internal peer router (or the internal router) through which the announced network is reachable for the speaker for the NEXT_HOP attribute, provided that peer X shares a common subnet with this address. This is a form of "third party" NEXT_HOP attribute. - Otherwise, if the route being announced was learned from an external peer, the speaker can use an IP address of any adjacent router (known from the received NEXT_HOP attribute) that the speaker itself uses for local route calculation in the NEXT_HOP attribute, provided that peer X shares a common subnet with this address. This is a second form of "third party" NEXT_HOP attribute. - Otherwise, if the external peer to which the route is being advertised shares a common subnet with one of the interfaces of the announcing BGP speaker, the speaker MAY use the IP address associated with such an interface in the NEXT_HOP attribute. This is known as a "first party" NEXT_HOP attribute. - By default (if none of the above conditions apply), the BGP speaker SHOULD use the IP address of the interface that the speaker uses to establish the BGP connection to peer X in the NEXT_HOP attribute. 3) When sending a message to an external peer X, and the peer is multiple IP hops away from the speaker (aka "multihop EBGP"): - The speaker MAY be configured to propagate the NEXT_HOP attribute. In this case, when advertising a route that the speaker learned from one of its peers, the NEXT_HOP attribute of the advertised route is exactly the same as the NEXT_HOP attribute of the learned route (the speaker does not modify the NEXT_HOP attribute). - By default, the BGP speaker SHOULD use the IP address of the interface that the speaker uses in the NEXT_HOP attribute to establish the BGP connection to peer X. Normally, the NEXT_HOP attribute is chosen such that the shortest available path will be taken. A BGP speaker MUST be able to support the disabling advertisement of third party NEXT_HOP attributes in order to handle imperfectly bridged media. A route originated by a BGP speaker SHALL NOT be advertised to a peer using an address of that peer as NEXT_HOP. A BGP speaker SHALL NOT install a route with itself as the next hop. The NEXT_HOP attribute is used by the BGP speaker to determine the actual outbound interface and immediate next-hop address that SHOULD be used to forward transit packets to the associated destinations. The immediate next-hop address is determined by performing a recursive route lookup operation for the IP address in the NEXT_HOP attribute, using the contents of the Routing Table, selecting one entry if multiple entries of equal cost exist. The Routing Table entry that resolves the IP address in the NEXT_HOP attribute will always specify the outbound interface. If the entry specifies an attached subnet, but does not specify a next-hop address, then the address in the NEXT_HOP attribute SHOULD be used as the immediate next-hop address. If the entry also specifies the next-hop address, this address SHOULD be used as the immediate next-hop address for packet forwarding. 5.1.4. MULTI_EXIT_DISC The MULTI_EXIT_DISC is an optional non-transitive attribute that is intended to be used on external (inter-AS) links to discriminate among multiple exit or entry points to the same neighboring AS. The value of the MULTI_EXIT_DISC attribute is a four-octet unsigned number, called a metric. All other factors being equal, the exit point with the lower metric SHOULD be preferred. If received over EBGP, the MULTI_EXIT_DISC attribute MAY be propagated over IBGP to other BGP speakers within the same AS (see also 9.1.2.2). The MULTI_EXIT_DISC attribute received from a neighboring AS MUST NOT be propagated to other neighboring ASes. A BGP speaker MUST implement a mechanism (based on local configuration) that allows the MULTI_EXIT_DISC attribute to be removed from a route. If a BGP speaker is configured to remove the MULTI_EXIT_DISC attribute from a route, then this removal MUST be done prior to determining the degree of preference of the route and prior to performing route selection (Decision Process phases 1 and 2). An implementation MAY also (based on local configuration) alter the value of the MULTI_EXIT_DISC attribute received over EBGP. If a BGP speaker is configured to alter the value of the MULTI_EXIT_DISC attribute received over EBGP, then altering the value MUST be done prior to determining the degree of preference of the route and prior to performing route selection (Decision Process phases 1 and 2). See Section 9.1.2.2 for necessary restrictions on this. 5.1.5. LOCAL_PREF LOCAL_PREF is a well-known attribute that SHALL be included in all UPDATE messages that a given BGP speaker sends to other internal peers. A BGP speaker SHALL calculate the degree of preference for each external route based on the locally-configured policy, and include the degree of preference when advertising a route to its internal peers. The higher degree of preference MUST be preferred. A BGP speaker uses the degree of preference learned via LOCAL_PREF in its Decision Process (see Section 9.1.1). A BGP speaker MUST NOT include this attribute in UPDATE messages it sends to external peers, except in the case of BGP Confederations [RFC3065]. If it is contained in an UPDATE message that is received from an external peer, then this attribute MUST be ignored by the receiving speaker, except in the case of BGP Confederations [RFC3065]. 5.1.6. ATOMIC_AGGREGATE ATOMIC_AGGREGATE is a well-known discretionary attribute. When a BGP speaker aggregates several routes for the purpose of advertisement to a particular peer, the AS_PATH of the aggregated route normally includes an AS_SET formed from the set of ASes from which the aggregate was formed. In many cases, the network administrator can determine if the aggregate can safely be advertised without the AS_SET, and without forming route loops. If an aggregate excludes at least some of the AS numbers present in the AS_PATH of the routes that are aggregated as a result of dropping the AS_SET, the aggregated route, when advertised to the peer, SHOULD include the ATOMIC_AGGREGATE attribute. A BGP speaker that receives a route with the ATOMIC_AGGREGATE attribute SHOULD NOT remove the attribute when propagating the route to other speakers. A BGP speaker that receives a route with the ATOMIC_AGGREGATE attribute MUST NOT make any NLRI of that route more specific (as defined in 9.1.4) when advertising this route to other BGP speakers. A BGP speaker that receives a route with the ATOMIC_AGGREGATE attribute needs to be aware of the fact that the actual path to destinations, as specified in the NLRI of the route, while having the loop-free property, may not be the path specified in the AS_PATH attribute of the route. 5.1.7. AGGREGATOR AGGREGATOR is an optional transitive attribute, which MAY be included in updates that are formed by aggregation (see Section 9.2.2.2). A BGP speaker that performs route aggregation MAY add the AGGREGATOR attribute, which SHALL contain its own AS number and IP address. The IP address SHOULD be the same as the BGP Identifier of the speaker. 6. BGP Error Handling. This section describes actions to be taken when errors are detected while processing BGP messages. When any of the conditions described here are detected, a NOTIFICATION message, with the indicated Error Code, Error Subcode, and Data fields, is sent, and the BGP connection is closed (unless it is explicitly stated that no NOTIFICATION message is to be sent and the BGP connection is not to be closed). If no Error Subcode is specified, then a zero MUST be used. The phrase "the BGP connection is closed" means the TCP connection has been closed, the associated Adj-RIB-In has been cleared, and all resources for that BGP connection have been deallocated. Entries in the Loc-RIB associated with the remote peer are marked as invalid. The local system recalculates its best routes for the destinations of the routes marked as invalid. Before the invalid routes are deleted from the system, it advertises, to its peers, either withdraws for the routes marked as invalid, or the new best routes before the invalid routes are deleted from the system. Unless specified explicitly, the Data field of the NOTIFICATION message that is sent to indicate an error is empty. 6.1. Message Header Error Handling All errors detected while processing the Message Header MUST be indicated by sending the NOTIFICATION message with the Error Code Message Header Error. The Error Subcode elaborates on the specific nature of the error. The expected value of the Marker field of the message header is all ones. If the Marker field of the message header is not as expected, then a synchronization error has occurred and the Error Subcode MUST be set to Connection Not Synchronized. If at least one of the following is true: - if the Length field of the message header is less than 19 or greater than 4096, or - if the Length field of an OPEN message is less than the minimum length of the OPEN message, or - if the Length field of an UPDATE message is less than the minimum length of the UPDATE message, or - if the Length field of a KEEPALIVE message is not equal to 19, or - if the Length field of a NOTIFICATION message is less than the minimum length of the NOTIFICATION message, then the Error Subcode MUST be set to Bad Message Length. The Data field MUST contain the erroneous Length field. If the Type field of the message header is not recognized, then the Error Subcode MUST be set to Bad Message Type. The Data field MUST contain the erroneous Type field. 6.2. OPEN Message Error Handling All errors detected while processing the OPEN message MUST be indicated by sending the NOTIFICATION message with the Error Code OPEN Message Error. The Error Subcode elaborates on the specific nature of the error. If the version number in the Version field of the received OPEN message is not supported, then the Error Subcode MUST be set to Unsupported Version Number. The Data field is a 2-octet unsigned integer, which indicates the largest, locally-supported version number less than the version the remote BGP peer bid (as indicated in the received OPEN message), or if the smallest, locally-supported version number is greater than the version the remote BGP peer bid, then the smallest, locally-supported version number. If the Autonomous System field of the OPEN message is unacceptable, then the Error Subcode MUST be set to Bad Peer AS. The determination of acceptable Autonomous System numbers is outside the scope of this protocol. If the Hold Time field of the OPEN message is unacceptable, then the Error Subcode MUST be set to Unacceptable Hold Time. An implementation MUST reject Hold Time values of one or two seconds. An implementation MAY reject any proposed Hold Time. An implementation that accepts a Hold Time MUST use the negotiated value for the Hold Time. If the BGP Identifier field of the OPEN message is syntactically incorrect, then the Error Subcode MUST be set to Bad BGP Identifier. Syntactic correctness means that the BGP Identifier field represents a valid unicast IP host address. If one of the Optional Parameters in the OPEN message is not recognized, then the Error Subcode MUST be set to Unsupported Optional Parameters. If one of the Optional Parameters in the OPEN message is recognized, but is malformed, then the Error Subcode MUST be set to 0 (Unspecific). 6.3. UPDATE Message Error Handling All errors detected while processing the UPDATE message MUST be indicated by sending the NOTIFICATION message with the Error Code UPDATE Message Error. The error subcode elaborates on the specific nature of the error. Error checking of an UPDATE message begins by examining the path attributes. If the Withdrawn Routes Length or Total Attribute Length is too large (i.e., if Withdrawn Routes Length + Total Attribute Length + 23 exceeds the message Length), then the Error Subcode MUST be set to Malformed Attribute List. If any recognized attribute has Attribute Flags that conflict with the Attribute Type Code, then the Error Subcode MUST be set to Attribute Flags Error. The Data field MUST contain the erroneous attribute (type, length, and value). If any recognized attribute has an Attribute Length that conflicts with the expected length (based on the attribute type code), then the Error Subcode MUST be set to Attribute Length Error. The Data field MUST contain the erroneous attribute (type, length, and value). If any of the well-known mandatory attributes are not present, then the Error Subcode MUST be set to Missing Well-known Attribute. The Data field MUST contain the Attribute Type Code of the missing, well-known attribute. If any of the well-known mandatory attributes are not recognized, then the Error Subcode MUST be set to Unrecognized Well-known Attribute. The Data field MUST contain the unrecognized attribute (type, length, and value). If the ORIGIN attribute has an undefined value, then the Error Sub- code MUST be set to Invalid Origin Attribute. The Data field MUST contain the unrecognized attribute (type, length, and value). If the NEXT_HOP attribute field is syntactically incorrect, then the Error Subcode MUST be set to Invalid NEXT_HOP Attribute. The Data field MUST contain the incorrect attribute (type, length, and value). Syntactic correctness means that the NEXT_HOP attribute represents a valid IP host address. The IP address in the NEXT_HOP MUST meet the following criteria to be considered semantically correct: a) It MUST NOT be the IP address of the receiving speaker. b) In the case of an EBGP, where the sender and receiver are one IP hop away from each other, either the IP address in the NEXT_HOP MUST be the sender's IP address that is used to establish the BGP connection, or the interface associated with the NEXT_HOP IP address MUST share a common subnet with the receiving BGP speaker. If the NEXT_HOP attribute is semantically incorrect, the error SHOULD be logged, and the route SHOULD be ignored. In this case, a NOTIFICATION message SHOULD NOT be sent, and the connection SHOULD NOT be closed. The AS_PATH attribute is checked for syntactic correctness. If the path is syntactically incorrect, then the Error Subcode MUST be set to Malformed AS_PATH. If the UPDATE message is received from an external peer, the local system MAY check whether the leftmost (with respect to the position of octets in the protocol message) AS in the AS_PATH attribute is equal to the autonomous system number of the peer that sent the message. If the check determines this is not the case, the Error Subcode MUST be set to Malformed AS_PATH. If an optional attribute is recognized, then the value of this attribute MUST be checked. If an error is detected, the Error Subcode MUST be set to Optional Attribute Error. The Data field MUST contain the attribute (type, length, and value).
EID 1633 (Verified) is as follows:

Section: 6.3

Original Text:

   If an optional attribute is recognized, then the value of this
   attribute MUST be checked.  If an error is detected, the attribute
   MUST be discarded, and the Error Subcode MUST be set to Optional
   Attribute Error.  The Data field MUST contain the attribute (type,
   length, and value).

Corrected Text:

   If an optional attribute is recognized, then the value of this
   attribute MUST be checked.  If an error is detected, the Error 
   Subcode MUST be set to Optional Attribute Error.  The Data 
   field MUST contain the attribute (type, length, and value).
Notes:
This simply removes the clause "the attribute MUST be discarded", which doesn't make sense since the peering is to be terminated anyway.
If any attribute appears more than once in the UPDATE message, then the Error Subcode MUST be set to Malformed Attribute List. The NLRI field in the UPDATE message is checked for syntactic validity. If the field is syntactically incorrect, then the Error Subcode MUST be set to Invalid Network Field. If a prefix in the NLRI field is semantically incorrect (e.g., an unexpected multicast IP address), an error SHOULD be logged locally, and the prefix SHOULD be ignored. An UPDATE message that contains correct path attributes, but no NLRI, SHALL be treated as a valid UPDATE message. 6.4. NOTIFICATION Message Error Handling If a peer sends a NOTIFICATION message, and the receiver of the message detects an error in that message, the receiver cannot use a NOTIFICATION message to report this error back to the peer. Any such error (e.g., an unrecognized Error Code or Error Subcode) SHOULD be noticed, logged locally, and brought to the attention of the administration of the peer. The means to do this, however, lies outside the scope of this document. 6.5. Hold Timer Expired Error Handling If a system does not receive successive KEEPALIVE, UPDATE, and/or NOTIFICATION messages within the period specified in the Hold Time field of the OPEN message, then the NOTIFICATION message with the Hold Timer Expired Error Code is sent and the BGP connection is closed. 6.6. Finite State Machine Error Handling Any error detected by the BGP Finite State Machine (e.g., receipt of an unexpected event) is indicated by sending the NOTIFICATION message with the Error Code Finite State Machine Error. 6.7. Cease In the absence of any fatal errors (that are indicated in this section), a BGP peer MAY choose, at any given time, to close its BGP connection by sending the NOTIFICATION message with the Error Code Cease. However, the Cease NOTIFICATION message MUST NOT be used when a fatal error indicated by this section does exist. A BGP speaker MAY support the ability to impose a locally-configured, upper bound on the number of address prefixes the speaker is willing to accept from a neighbor. When the upper bound is reached, the speaker, under control of local configuration, either (a) discards new address prefixes from the neighbor (while maintaining the BGP connection with the neighbor), or (b) terminates the BGP connection with the neighbor. If the BGP speaker decides to terminate its BGP connection with a neighbor because the number of address prefixes received from the neighbor exceeds the locally-configured, upper bound, then the speaker MUST send the neighbor a NOTIFICATION message with the Error Code Cease. The speaker MAY also log this locally. 6.8. BGP Connection Collision Detection If a pair of BGP speakers try to establish a BGP connection with each other simultaneously, then two parallel connections well be formed. If the source IP address used by one of these connections is the same as the destination IP address used by the other, and the destination IP address used by the first connection is the same as the source IP address used by the other, connection collision has occurred. In the event of connection collision, one of the connections MUST be closed. Based on the value of the BGP Identifier, a convention is established for detecting which BGP connection is to be preserved when a collision occurs. The convention is to compare the BGP Identifiers of the peers involved in the collision and to retain only the connection initiated by the BGP speaker with the higher-valued BGP Identifier. Upon receipt of an OPEN message, the local system MUST examine all of its connections that are in the OpenConfirm state. A BGP speaker MAY also examine connections in an OpenSent state if it knows the BGP Identifier of the peer by means outside of the protocol. If, among these connections, there is a connection to a remote BGP speaker whose BGP Identifier equals the one in the OPEN message, and this connection collides with the connection over which the OPEN message is received, then the local system performs the following collision resolution procedure: 1) The BGP Identifier of the local system is compared to the BGP Identifier of the remote system (as specified in the OPEN message). Comparing BGP Identifiers is done by converting them to host byte order and treating them as 4-octet unsigned integers. 2) If the value of the local BGP Identifier is less than the remote one, the local system closes the BGP connection that already exists (the one that is already in the OpenConfirm state), and accepts the BGP connection initiated by the remote system. 3) Otherwise, the local system closes the newly created BGP connection (the one associated with the newly received OPEN message), and continues to use the existing one (the one that is already in the OpenConfirm state). Unless allowed via configuration, a connection collision with an existing BGP connection that is in the Established state causes closing of the newly created connection. Note that a connection collision cannot be detected with connections that are in Idle, Connect, or Active states. Closing the BGP connection (that results from the collision resolution procedure) is accomplished by sending the NOTIFICATION message with the Error Code Cease. 7. BGP Version Negotiation BGP speakers MAY negotiate the version of the protocol by making multiple attempts at opening a BGP connection, starting with the highest version number each BGP speaker supports. If an open attempt fails with an Error Code, OPEN Message Error, and an Error Subcode, Unsupported Version Number, then the BGP speaker has available the version number it tried, the version number its peer tried, the version number passed by its peer in the NOTIFICATION message, and the version numbers it supports. If the two peers do support one or more common versions, then this will allow them to rapidly determine the highest common version. In order to support BGP version negotiation, future versions of BGP MUST retain the format of the OPEN and NOTIFICATION messages. 8. BGP Finite State Machine (FSM) The data structures and FSM described in this document are conceptual and do not have to be implemented precisely as described here, as long as the implementations support the described functionality and they exhibit the same externally visible behavior. This section specifies the BGP operation in terms of a Finite State Machine (FSM). The section falls into two parts: 1) Description of Events for the State machine (Section 8.1) 2) Description of the FSM (Section 8.2) Session attributes required (mandatory) for each connection are: 1) State 2) ConnectRetryCounter 3) ConnectRetryTimer 4) ConnectRetryTime 5) HoldTimer 6) HoldTime 7) KeepaliveTimer 8) KeepaliveTime The state session attribute indicates the current state of the BGP FSM. The ConnectRetryCounter indicates the number of times a BGP peer has tried to establish a peer session. The mandatory attributes related to timers are described in Section 10. Each timer has a "timer" and a "time" (the initial value). The optional Session attributes are listed below. These optional attributes may be supported, either per connection or per local system: 1) AcceptConnectionsUnconfiguredPeers 2) AllowAutomaticStart 3) AllowAutomaticStop 4) CollisionDetectEstablishedState 5) DampPeerOscillations 6) DelayOpen 7) DelayOpenTime 8) DelayOpenTimer 9) IdleHoldTime 10) IdleHoldTimer 11) PassiveTcpEstablishment 12) SendNOTIFICATIONwithoutOPEN 13) TrackTcpState The optional session attributes support different features of the BGP functionality that have implications for the BGP FSM state transitions. Two groups of the attributes which relate to timers are: group 1: DelayOpen, DelayOpenTime, DelayOpenTimer group 2: DampPeerOscillations, IdleHoldTime, IdleHoldTimer The first parameter (DelayOpen, DampPeerOscillations) is an optional attribute that indicates that the Timer function is active. The "Time" value specifies the initial value for the "Timer" (DelayOpenTime, IdleHoldTime). The "Timer" specifies the actual timer. Please refer to Section 8.1.1 for an explanation of the interaction between these optional attributes and the events signaled to the state machine. Section 8.2.1.3 also provides a short overview of the different types of optional attributes (flags or timers). 8.1. Events for the BGP FSM 8.1.1. Optional Events Linked to Optional Session Attributes The Inputs to the BGP FSM are events. Events can either be mandatory or optional. Some optional events are linked to optional session attributes. Optional session attributes enable several groups of FSM functionality. The linkage between FSM functionality, events, and the optional session attributes are described below. Group 1: Automatic Administrative Events (Start/Stop) Optional Session Attributes: AllowAutomaticStart, AllowAutomaticStop, DampPeerOscillations, IdleHoldTime, IdleHoldTimer Option 1: AllowAutomaticStart Description: A BGP peer connection can be started and stopped by administrative control. This administrative control can either be manual, based on operator intervention, or under the control of logic that is specific to a BGP implementation. The term "automatic" refers to a start being issued to the BGP peer connection FSM when such logic determines that the BGP peer connection should be restarted. The AllowAutomaticStart attribute specifies that this BGP connection supports automatic starting of the BGP connection. If the BGP implementation supports AllowAutomaticStart, the peer may be repeatedly restarted. Three other options control the rate at which the automatic restart occurs: DampPeerOscillations, IdleHoldTime, and the IdleHoldTimer. The DampPeerOscillations option specifies that the implementation engages additional logic to damp the oscillations of BGP peers in the face of sequences of automatic start and automatic stop. IdleHoldTime specifies the length of time the BGP peer is held in the Idle state prior to allowing the next automatic restart. The IdleHoldTimer is the timer that holds the peer in Idle state. An example of DampPeerOscillations logic is an increase of the IdleHoldTime value if a BGP peer oscillates connectivity (connected/disconnected) repeatedly within a time period. To engage this logic, a peer could connect and disconnect 10 times within 5 minutes. The IdleHoldTime value would be reset from 0 to 120 seconds. Values: TRUE or FALSE Option 2: AllowAutomaticStop Description: This BGP peer session optional attribute indicates that the BGP connection allows "automatic" stopping of the BGP connection. An "automatic" stop is defined as a stop under the control of implementation-specific logic. The implementation-specific logic is outside the scope of this specification. Values: TRUE or FALSE Option 3: DampPeerOscillations Description: The DampPeerOscillations optional session attribute indicates that the BGP connection is using logic that damps BGP peer oscillations in the Idle State. Value: TRUE or FALSE Option 4: IdleHoldTime Description: The IdleHoldTime is the value that is set in the IdleHoldTimer. Values: Time in seconds Option 5: IdleHoldTimer Description: The IdleHoldTimer aids in controlling BGP peer oscillation. The IdleHoldTimer is used to keep the BGP peer in Idle for a particular duration. The IdleHoldTimer_Expires event is described in Section 8.1.3. Values: Time in seconds Group 2: Unconfigured Peers Optional Session Attributes: AcceptConnectionsUnconfiguredPeers Option 1: AcceptConnectionsUnconfiguredPeers Description: The BGP FSM optionally allows the acceptance of BGP peer connections from neighbors that are not pre-configured. The "AcceptConnectionsUnconfiguredPeers" optional session attribute allows the FSM to support the state transitions that allow the implementation to accept or reject these unconfigured peers. The AcceptConnectionsUnconfiguredPeers has security implications. Please refer to the BGP Vulnerabilities document [RFC4272] for details. Value: True or False Group 3: TCP processing Optional Session Attributes: PassiveTcpEstablishment, TrackTcpState Option 1: PassiveTcpEstablishment Description: This option indicates that the BGP FSM will passively wait for the remote BGP peer to establish the BGP TCP connection. value: TRUE or FALSE Option 2: TrackTcpState Description: The BGP FSM normally tracks the end result of a TCP connection attempt rather than individual TCP messages. Optionally, the BGP FSM can support additional interaction with the TCP connection negotiation. The interaction with the TCP events may increase the amount of logging the BGP peer connection requires and the number of BGP FSM changes. Value: TRUE or FALSE Group 4: BGP Message Processing Optional Session Attributes: DelayOpen, DelayOpenTime, DelayOpenTimer, SendNOTIFICATIONwithoutOPEN, CollisionDetectEstablishedState Option 1: DelayOpen Description: The DelayOpen optional session attribute allows implementations to be configured to delay sending an OPEN message for a specific time period (DelayOpenTime). The delay allows the remote BGP Peer time to send the first OPEN message. Value: TRUE or FALSE Option 2: DelayOpenTime Description: The DelayOpenTime is the initial value set in the DelayOpenTimer. Value: Time in seconds Option 3: DelayOpenTimer Description: The DelayOpenTimer optional session attribute is used to delay the sending of an OPEN message on a connection. The DelayOpenTimer_Expires event (Event 12) is described in Section 8.1.3. Value: Time in seconds Option 4: SendNOTIFICATIONwithoutOPEN Description: The SendNOTIFICATIONwithoutOPEN allows a peer to send a NOTIFICATION without first sending an OPEN message. Without this optional session attribute, the BGP connection assumes that an OPEN message must be sent by a peer prior to the peer sending a NOTIFICATION message. Value: True or False Option 5: CollisionDetectEstablishedState Description: Normally, a Detect Collision (see Section 6.8) will be ignored in the Established state. This optional session attribute indicates that this BGP connection processes collisions in the Established state. Value: True or False Note: The optional session attributes clarify the BGP FSM description for existing features of BGP implementations. The optional session attributes may be pre-defined for an implementation and not readable via management interfaces for existing correct implementations. As newer BGP MIBs (version 2 and beyond) are supported, these fields will be accessible via a management interface. 8.1.2. Administrative Events An administrative event is an event in which the operator interface and BGP Policy engine signal the BGP-finite state machine to start or stop the BGP state machine. The basic start and stop indications are augmented by optional connection attributes that signal a certain type of start or stop mechanism to the BGP FSM. An example of this combination is Event 5, AutomaticStart_with_PassiveTcpEstablishment. With this event, the BGP implementation signals to the BGP FSM that the implementation is using an Automatic Start with the option to use a Passive TCP Establishment. The Passive TCP establishment signals that this BGP FSM will wait for the remote side to start the TCP establishment. Note that only Event 1 (ManualStart) and Event 2 (ManualStop) are mandatory administrative events. All other administrative events are optional (Events 3-8). Each event below has a name, definition, status (mandatory or optional), and the optional session attributes that SHOULD be set at each stage. When generating Event 1 through Event 8 for the BGP FSM, the conditions specified in the "Optional Attribute Status" section are verified. If any of these conditions are not satisfied, then the local system should log an FSM error. The settings of optional session attributes may be implicit in some implementations, and therefore may not be set explicitly by an external operator action. Section 8.2.1.5 describes these implicit settings of the optional session attributes. The administrative states described below may also be implicit in some implementations and not directly configurable by an external operator. Event 1: ManualStart Definition: Local system administrator manually starts the peer connection. Status: Mandatory Optional Attribute Status: The PassiveTcpEstablishment attribute SHOULD be set to FALSE. Event 2: ManualStop Definition: Local system administrator manually stops the peer connection. Status: Mandatory Optional Attribute Status: No interaction with any optional attributes. Event 3: AutomaticStart Definition: Local system automatically starts the BGP connection. Status: Optional, depending on local system Optional Attribute Status: 1) The AllowAutomaticStart attribute SHOULD be set to TRUE if this event occurs. 2) If the PassiveTcpEstablishment optional session attribute is supported, it SHOULD be set to FALSE. 3) If the DampPeerOscillations is supported, it SHOULD be set to FALSE when this event occurs. Event 4: ManualStart_with_PassiveTcpEstablishment Definition: Local system administrator manually starts the peer connection, but has PassiveTcpEstablishment enabled. The PassiveTcpEstablishment optional attribute indicates that the peer will listen prior to establishing the connection. Status: Optional, depending on local system Optional Attribute Status: 1) The PassiveTcpEstablishment attribute SHOULD be set to TRUE if this event occurs. 2) The DampPeerOscillations attribute SHOULD be set to FALSE when this event occurs. Event 5: AutomaticStart_with_PassiveTcpEstablishment Definition: Local system automatically starts the BGP connection with the PassiveTcpEstablishment enabled. The PassiveTcpEstablishment optional attribute indicates that the peer will listen prior to establishing a connection. Status: Optional, depending on local system Optional Attribute Status: 1) The AllowAutomaticStart attribute SHOULD be set to TRUE. 2) The PassiveTcpEstablishment attribute SHOULD be set to TRUE. 3) If the DampPeerOscillations attribute is supported, the DampPeerOscillations SHOULD be set to FALSE. Event 6: AutomaticStart_with_DampPeerOscillations Definition: Local system automatically starts the BGP peer connection with peer oscillation damping enabled. The exact method of damping persistent peer oscillations is determined by the implementation and is outside the scope of this document. Status: Optional, depending on local system. Optional Attribute Status: 1) The AllowAutomaticStart attribute SHOULD be set to TRUE. 2) The DampPeerOscillations attribute SHOULD be set to TRUE. 3) The PassiveTcpEstablishment attribute SHOULD be set to FALSE. Event 7: AutomaticStart_with_DampPeerOscillations_and_ PassiveTcpEstablishment Definition: Local system automatically starts the BGP peer connection with peer oscillation damping enabled and PassiveTcpEstablishment enabled. The exact method of damping persistent peer oscillations is determined by the implementation and is outside the scope of this document. Status: Optional, depending on local system Optional Attributes Status: 1) The AllowAutomaticStart attribute SHOULD be set to TRUE. 2) The DampPeerOscillations attribute SHOULD be set to TRUE. 3) The PassiveTcpEstablishment attribute SHOULD be set to TRUE. Event 8: AutomaticStop Definition: Local system automatically stops the BGP connection. An example of an automatic stop event is exceeding the number of prefixes for a given peer and the local system automatically disconnecting the peer. Status: Optional, depending on local system Optional Attribute Status: 1) The AllowAutomaticStop attribute SHOULD be TRUE. 8.1.3. Timer Events Event 9: ConnectRetryTimer_Expires Definition: An event generated when the ConnectRetryTimer expires. Status: Mandatory Event 10: HoldTimer_Expires Definition: An event generated when the HoldTimer expires. Status: Mandatory Event 11: KeepaliveTimer_Expires Definition: An event generated when the KeepaliveTimer expires. Status: Mandatory Event 12: DelayOpenTimer_Expires Definition: An event generated when the DelayOpenTimer expires. Status: Optional Optional Attribute Status: If this event occurs, 1) DelayOpen attribute SHOULD be set to TRUE, 2) DelayOpenTime attribute SHOULD be supported, 3) DelayOpenTimer SHOULD be supported. Event 13: IdleHoldTimer_Expires Definition: An event generated when the IdleHoldTimer expires, indicating that the BGP connection has completed waiting for the back-off period to prevent BGP peer oscillation. The IdleHoldTimer is only used when the persistent peer oscillation damping function is enabled by setting the DampPeerOscillations optional attribute to TRUE. Implementations not implementing the persistent peer oscillation damping function may not have the IdleHoldTimer. Status: Optional Optional Attribute Status: If this event occurs: 1) DampPeerOscillations attribute SHOULD be set to TRUE. 2) IdleHoldTimer SHOULD have just expired. 8.1.4. TCP Connection-Based Events Event 14: TcpConnection_Valid Definition: Event indicating the local system reception of a TCP connection request with a valid source IP address, TCP port, destination IP address, and TCP Port. The definition of invalid source and invalid destination IP address is determined by the implementation. BGP's destination port SHOULD be port 179, as defined by IANA. TCP connection request is denoted by the local system receiving a TCP SYN. Status: Optional Optional Attribute Status: 1) The TrackTcpState attribute SHOULD be set to TRUE if this event occurs. Event 15: Tcp_CR_Invalid Definition: Event indicating the local system reception of a TCP connection request with either an invalid source address or port number, or an invalid destination address or port number. BGP destination port number SHOULD be 179, as defined by IANA. A TCP connection request occurs when the local system receives a TCP SYN. Status: Optional Optional Attribute Status: 1) The TrackTcpState attribute should be set to TRUE if this event occurs. Event 16: Tcp_CR_Acked Definition: Event indicating the local system's request to establish a TCP connection to the remote peer. The local system's TCP connection sent a TCP SYN, received a TCP SYN/ACK message, and sent a TCP ACK. Status: Mandatory Event 17: TcpConnectionConfirmed Definition: Event indicating that the local system has received a confirmation that the TCP connection has been established by the remote site. The remote peer's TCP engine sent a TCP SYN. The local peer's TCP engine sent a SYN, ACK message and now has received a final ACK. Status: Mandatory Event 18: TcpConnectionFails Definition: Event indicating that the local system has received a TCP connection failure notice. The remote BGP peer's TCP machine could have sent a FIN. The local peer would respond with a FIN-ACK. Another possibility is that the local peer indicated a timeout in the TCP connection and downed the connection. Status: Mandatory 8.1.5. BGP Message-Based Events Event 19: BGPOpen Definition: An event is generated when a valid OPEN message has been received. Status: Mandatory Optional Attribute Status: 1) The DelayOpen optional attribute SHOULD be set to FALSE. 2) The DelayOpenTimer SHOULD not be running. Event 20: BGPOpen with DelayOpenTimer running Definition: An event is generated when a valid OPEN message has been received for a peer that has a successfully established transport connection and is currently delaying the sending of a BGP open message. Status: Optional Optional Attribute Status: 1) The DelayOpen attribute SHOULD be set to TRUE. 2) The DelayOpenTimer SHOULD be running. Event 21: BGPHeaderErr Definition: An event is generated when a received BGP message header is not valid. Status: Mandatory Event 22: BGPOpenMsgErr Definition: An event is generated when an OPEN message has been received with errors. Status: Mandatory Event 23: OpenCollisionDump Definition: An event generated administratively when a connection collision has been detected while processing an incoming OPEN message and this connection has been selected to be disconnected. See Section 6.8 for more information on collision detection. Event 23 is an administrative action generated by implementation logic that determines whether this connection needs to be dropped per the rules in Section 6.8. This event may occur if the FSM is implemented as two linked state machines. Status: Optional Optional Attribute Status: If the state machine is to process this event in the Established state, 1) CollisionDetectEstablishedState optional attribute SHOULD be set to TRUE. Please note: The OpenCollisionDump event can occur in Idle, Connect, Active, OpenSent, and OpenConfirm without any optional attributes being set. Event 24: NotifMsgVerErr Definition: An event is generated when a NOTIFICATION message with "version error" is received. Status: Mandatory Event 25: NotifMsg Definition: An event is generated when a NOTIFICATION message is received and the error code is anything but "version error". Status: Mandatory Event 26: KeepAliveMsg Definition: An event is generated when a KEEPALIVE message is received. Status: Mandatory Event 27: UpdateMsg Definition: An event is generated when a valid UPDATE message is received. Status: Mandatory Event 28: UpdateMsgErr Definition: An event is generated when an invalid UPDATE message is received. Status: Mandatory 8.2. Description of FSM 8.2.1. FSM Definition BGP MUST maintain a separate FSM for each configured peer. Each BGP peer paired in a potential connection will attempt to connect to the other, unless configured to remain in the idle state, or configured to remain passive. For the purpose of this discussion, the active or connecting side of the TCP connection (the side of a TCP connection sending the first TCP SYN packet) is called outgoing. The passive or listening side (the sender of the first SYN/ACK) is called an incoming connection. (See Section 8.2.1.1 for information on the terms active and passive used below.) A BGP implementation MUST connect to and listen on TCP port 179 for incoming connections in addition to trying to connect to peers. For each incoming connection, a state machine MUST be instantiated. There exists a period in which the identity of the peer on the other end of an incoming connection is known, but the BGP identifier is not known. During this time, both an incoming and outgoing connection may exist for the same configured peering. This is referred to as a connection collision (see Section 6.8). A BGP implementation will have, at most, one FSM for each configured peering, plus one FSM for each incoming TCP connection for which the peer has not yet been identified. Each FSM corresponds to exactly one TCP connection. There may be more than one connection between a pair of peers if the connections are configured to use a different pair of IP addresses. This is referred to as multiple "configured peerings" to the same peer. 8.2.1.1. Terms "active" and "passive" The terms active and passive have been in the Internet operator's vocabulary for almost a decade and have proven useful. The words active and passive have slightly different meanings when applied to a TCP connection or a peer. There is only one active side and one passive side to any one TCP connection, per the definition above and the state machine below. When a BGP speaker is configured as active, it may end up on either the active or passive side of the connection that eventually gets established. Once the TCP connection is completed, it doesn't matter which end was active and which was passive. The only difference is in which side of the TCP connection has port number 179. 8.2.1.2. FSM and Collision Detection There is one FSM per BGP connection. When the connection collision occurs prior to determining what peer a connection is associated with, there may be two connections for one peer. After the connection collision is resolved (see Section 6.8), the FSM for the connection that is closed SHOULD be disposed. 8.2.1.3. FSM and Optional Session Attributes Optional Session Attributes specify either attributes that act as flags (TRUE or FALSE) or optional timers. For optional attributes that act as flags, if the optional session attribute can be set to TRUE on the system, the corresponding BGP FSM actions must be supported. For example, if the following options can be set in a BGP implementation: AutoStart and PassiveTcpEstablishment, then Events 3, 4 and 5 must be supported. If an Optional Session attribute cannot be set to TRUE, the events supporting that set of options do not have to be supported. Each of the optional timers (DelayOpenTimer and IdleHoldTimer) has a group of attributes that are: - flag indicating support, - Time set in Timer - Timer. The two optional timers show this format: DelayOpenTimer: DelayOpen, DelayOpenTime, DelayOpenTimer IdleHoldTimer: DampPeerOscillations, IdleHoldTime, IdleHoldTimer If the flag indicating support for an optional timer (DelayOpen or DampPeerOscillations) cannot be set to TRUE, the timers and events supporting that option do not have to be supported. 8.2.1.4. FSM Event Numbers The Event numbers (1-28) utilized in this state machine description aid in specifying the behavior of the BGP state machine. Implementations MAY use these numbers to provide network management information. The exact form of an FSM or the FSM events are specific to each implementation. 8.2.1.5. FSM Actions that are Implementation Dependent At certain points, the BGP FSM specifies that BGP initialization will occur or that BGP resources will be deleted. The initialization of the BGP FSM and the associated resources depend on the policy portion of the BGP implementation. The details of these actions are outside the scope of the FSM document. 8.2.2. Finite State Machine
EID 2838 (Verified) is as follows:

Section: 8.2.2

Original Text:

on page 72, description of the Established state:

If the HoldTimer_Expires event occurs (Event 10), the local system:
 ...[list of actions to take]...

Corrected Text:

If the HoldTimer_Expires event occurs (Event 10), the local system:
 - deletes all routes associated with this connection
 ...[list of actions in original text]...
Notes:
All other transitions from Established to Idle explicitly state that all routes associated with the connection are deleted. This transition should as well.
Idle state: Initially, the BGP peer FSM is in the Idle state. Hereafter, the BGP peer FSM will be shortened to BGP FSM. In this state, BGP FSM refuses all incoming BGP connections for this peer. No resources are allocated to the peer. In response to a ManualStart event (Event 1) or an AutomaticStart event (Event 3), the local system: - initializes all BGP resources for the peer connection, - sets ConnectRetryCounter to zero, - starts the ConnectRetryTimer with the initial value, - initiates a TCP connection to the other BGP peer, - listens for a connection that may be initiated by the remote BGP peer, and - changes its state to Connect. The ManualStop event (Event 2) and AutomaticStop (Event 8) event are ignored in the Idle state. In response to a ManualStart_with_PassiveTcpEstablishment event (Event 4) or AutomaticStart_with_PassiveTcpEstablishment event (Event 5), the local system: - initializes all BGP resources, - sets the ConnectRetryCounter to zero, - starts the ConnectRetryTimer with the initial value, - listens for a connection that may be initiated by the remote peer, and - changes its state to Active. The exact value of the ConnectRetryTimer is a local matter, but it SHOULD be sufficiently large to allow TCP initialization. If the DampPeerOscillations attribute is set to TRUE, the following three additional events may occur within the Idle state: - AutomaticStart_with_DampPeerOscillations (Event 6), - AutomaticStart_with_DampPeerOscillations_and_ PassiveTcpEstablishment (Event 7), - IdleHoldTimer_Expires (Event 13). Upon receiving these 3 events, the local system will use these events to prevent peer oscillations. The method of preventing persistent peer oscillation is outside the scope of this document. Any other event (Events 9-12, 15-28) received in the Idle state does not cause change in the state of the local system. Connect State: In this state, BGP FSM is waiting for the TCP connection to be completed. The start events (Events 1, 3-7) are ignored in the Connect state. In response to a ManualStop event (Event 2), the local system: - drops the TCP connection, - releases all BGP resources, - sets ConnectRetryCounter to zero, - stops the ConnectRetryTimer and sets ConnectRetryTimer to zero, and - changes its state to Idle. In response to the ConnectRetryTimer_Expires event (Event 9), the local system: - drops the TCP connection, - restarts the ConnectRetryTimer, - stops the DelayOpenTimer and resets the timer to zero, - initiates a TCP connection to the other BGP peer, - continues to listen for a connection that may be initiated by the remote BGP peer, and - stays in the Connect state. If the DelayOpenTimer_Expires event (Event 12) occurs in the Connect state, the local system: - sends an OPEN message to its peer, - sets the HoldTimer to a large value, and - changes its state to OpenSent. If the BGP FSM receives a TcpConnection_Valid event (Event 14), the TCP connection is processed, and the connection remains in the Connect state. If the BGP FSM receives a Tcp_CR_Invalid event (Event 15), the local system rejects the TCP connection, and the connection remains in the Connect state. If the TCP connection succeeds (Event 16 or Event 17), the local system checks the DelayOpen attribute prior to processing. If the DelayOpen attribute is set to TRUE, the local system: - stops the ConnectRetryTimer (if running) and sets the ConnectRetryTimer to zero, - sets the DelayOpenTimer to the initial value, and - stays in the Connect state. If the DelayOpen attribute is set to FALSE, the local system: - stops the ConnectRetryTimer (if running) and sets the ConnectRetryTimer to zero, - completes BGP initialization - sends an OPEN message to its peer, - sets the HoldTimer to a large value, and - changes its state to OpenSent. A HoldTimer value of 4 minutes is suggested. If the TCP connection fails (Event 18), the local system checks the DelayOpenTimer. If the DelayOpenTimer is running, the local system: - restarts the ConnectRetryTimer with the initial value, - stops the DelayOpenTimer and resets its value to zero, - continues to listen for a connection that may be initiated by the remote BGP peer, and - changes its state to Active. If the DelayOpenTimer is not running, the local system: - stops the ConnectRetryTimer to zero, - drops the TCP connection, - releases all BGP resources, and - changes its state to Idle. If an OPEN message is received while the DelayOpenTimer is running (Event 20), the local system: - stops the ConnectRetryTimer (if running) and sets the ConnectRetryTimer to zero, - completes the BGP initialization, - stops and clears the DelayOpenTimer (sets the value to zero), - sends an OPEN message, - sends a KEEPALIVE message, - if the HoldTimer initial value is non-zero, - starts the KeepaliveTimer with the initial value and - resets the HoldTimer to the negotiated value, else, if the HoldTimer initial value is zero, - resets the KeepaliveTimer and - resets the HoldTimer value to zero, - and changes its state to OpenConfirm. If the value of the autonomous system field is the same as the local Autonomous System number, set the connection status to an internal connection; otherwise it will be "external". If BGP message header checking (Event 21) or OPEN message checking detects an error (Event 22) (see Section 6.2), the local system: - (optionally) If the SendNOTIFICATIONwithoutOPEN attribute is set to TRUE, then the local system first sends a NOTIFICATION message with the appropriate error code, and then - stops the ConnectRetryTimer (if running) and sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If a NOTIFICATION message is received with a version error (Event 24), the local system checks the DelayOpenTimer. If the DelayOpenTimer is running, the local system: - stops the ConnectRetryTimer (if running) and sets the ConnectRetryTimer to zero, - stops and resets the DelayOpenTimer (sets to zero), - releases all BGP resources, - drops the TCP connection, and - changes its state to Idle. If the DelayOpenTimer is not running, the local system: - stops the ConnectRetryTimer and sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - performs peer oscillation damping if the DampPeerOscillations attribute is set to True, and - changes its state to Idle. In response to any other events (Events 8, 10-11, 13, 19, 23, 25-28), the local system: - if the ConnectRetryTimer is running, stops and resets the ConnectRetryTimer (sets to zero), - if the DelayOpenTimer is running, stops and resets the DelayOpenTimer (sets to zero), - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - performs peer oscillation damping if the DampPeerOscillations attribute is set to True, and - changes its state to Idle. Active State: In this state, BGP FSM is trying to acquire a peer by listening for, and accepting, a TCP connection. The start events (Events 1, 3-7) are ignored in the Active state. In response to a ManualStop event (Event 2), the local system: - If the DelayOpenTimer is running and the SendNOTIFICATIONwithoutOPEN session attribute is set, the local system sends a NOTIFICATION with a Cease, - releases all BGP resources including stopping the DelayOpenTimer - drops the TCP connection, - sets ConnectRetryCounter to zero, - stops the ConnectRetryTimer and sets the ConnectRetryTimer to zero, and - changes its state to Idle. In response to a ConnectRetryTimer_Expires event (Event 9), the local system: - restarts the ConnectRetryTimer (with initial value), - initiates a TCP connection to the other BGP peer, - continues to listen for a TCP connection that may be initiated by a remote BGP peer, and - changes its state to Connect. If the local system receives a DelayOpenTimer_Expires event (Event 12), the local system: - sets the ConnectRetryTimer to zero, - stops and clears the DelayOpenTimer (set to zero), - completes the BGP initialization, - sends the OPEN message to its remote peer, - sets its hold timer to a large value, and - changes its state to OpenSent. A HoldTimer value of 4 minutes is also suggested for this state transition. If the local system receives a TcpConnection_Valid event (Event 14), the local system processes the TCP connection flags and stays in the Active state. If the local system receives a Tcp_CR_Invalid event (Event 15), the local system rejects the TCP connection and stays in the Active State. In response to the success of a TCP connection (Event 16 or Event 17), the local system checks the DelayOpen optional attribute prior to processing. If the DelayOpen attribute is set to TRUE, the local system: - stops the ConnectRetryTimer and sets the ConnectRetryTimer to zero, - sets the DelayOpenTimer to the initial value (DelayOpenTime), and - stays in the Active state. If the DelayOpen attribute is set to FALSE, the local system: - sets the ConnectRetryTimer to zero, - completes the BGP initialization, - sends the OPEN message to its peer, - sets its HoldTimer to a large value, and - changes its state to OpenSent. A HoldTimer value of 4 minutes is suggested as a "large value" for the HoldTimer. If the local system receives a TcpConnectionFails event (Event 18), the local system: - restarts the ConnectRetryTimer (with the initial value), - stops and clears the DelayOpenTimer (sets the value to zero), - releases all BGP resource, - increments the ConnectRetryCounter by 1, - optionally performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If an OPEN message is received and the DelayOpenTimer is running (Event 20), the local system: - stops the ConnectRetryTimer (if running) and sets the ConnectRetryTimer to zero, - stops and clears the DelayOpenTimer (sets to zero), - completes the BGP initialization, - sends an OPEN message, - sends a KEEPALIVE message, - if the HoldTimer value is non-zero, - starts the KeepaliveTimer to initial value, - resets the HoldTimer to the negotiated value, else if the HoldTimer is zero - resets the KeepaliveTimer (set to zero), - resets the HoldTimer to zero, and - changes its state to OpenConfirm. If the value of the autonomous system field is the same as the local Autonomous System number, set the connection status to an internal connection; otherwise it will be external. If BGP message header checking (Event 21) or OPEN message checking detects an error (Event 22) (see Section 6.2), the local system: - (optionally) sends a NOTIFICATION message with the appropriate error code if the SendNOTIFICATIONwithoutOPEN attribute is set to TRUE, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If a NOTIFICATION message is received with a version error (Event 24), the local system checks the DelayOpenTimer. If the DelayOpenTimer is running, the local system: - stops the ConnectRetryTimer (if running) and sets the ConnectRetryTimer to zero, - stops and resets the DelayOpenTimer (sets to zero), - releases all BGP resources, - drops the TCP connection, and - changes its state to Idle. If the DelayOpenTimer is not running, the local system: - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. In response to any other event (Events 8, 10-11, 13, 19, 23, 25-28), the local system: - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by one, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. OpenSent: In this state, BGP FSM waits for an OPEN message from its peer. The start events (Events 1, 3-7) are ignored in the OpenSent state. If a ManualStop event (Event 2) is issued in the OpenSent state, the local system: - sends the NOTIFICATION with a Cease, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - sets the ConnectRetryCounter to zero, and - changes its state to Idle. If an AutomaticStop event (Event 8) is issued in the OpenSent state, the local system: - sends the NOTIFICATION with a Cease, - sets the ConnectRetryTimer to zero, - releases all the BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If the HoldTimer_Expires (Event 10), the local system: - sends a NOTIFICATION message with the error code Hold Timer Expired, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If a TcpConnection_Valid (Event 14), Tcp_CR_Acked (Event 16), or a TcpConnectionConfirmed event (Event 17) is received, a second TCP connection may be in progress. This second TCP connection is tracked per Connection Collision processing (Section 6.8) until an OPEN message is received. A TCP Connection Request for an Invalid port (Tcp_CR_Invalid (Event 15)) is ignored. If a TcpConnectionFails event (Event 18) is received, the local system: - closes the BGP connection, - restarts the ConnectRetryTimer, - continues to listen for a connection that may be initiated by the remote BGP peer, and - changes its state to Active. When an OPEN message is received, all fields are checked for correctness. If there are no errors in the OPEN message (Event 19), the local system: - resets the DelayOpenTimer to zero, - sets the BGP ConnectRetryTimer to zero, - sends a KEEPALIVE message, and - sets a KeepaliveTimer (via the text below) - sets the HoldTimer according to the negotiated value (see Section 4.2), - changes its state to OpenConfirm. If the negotiated hold time value is zero, then the HoldTimer and KeepaliveTimer are not started. If the value of the Autonomous System field is the same as the local Autonomous System number, then the connection is an "internal" connection; otherwise, it is an "external" connection. (This will impact UPDATE processing as described below.) If the BGP message header checking (Event 21) or OPEN message checking detects an error (Event 22)(see Section 6.2), the local system: - sends a NOTIFICATION message with the appropriate error code, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is TRUE, and - changes its state to Idle. Collision detection mechanisms (Section 6.8) need to be applied when a valid BGP OPEN message is received (Event 19 or Event 20). Please refer to Section 6.8 for the details of the comparison. A CollisionDetectDump event occurs when the BGP implementation determines, by means outside the scope of this document, that a connection collision has occurred. If a connection in the OpenSent state is determined to be the connection that must be closed, an OpenCollisionDump (Event 23) is signaled to the state machine. If such an event is received in the OpenSent state, the local system: - sends a NOTIFICATION with a Cease, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If a NOTIFICATION message is received with a version error (Event 24), the local system: - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, and - changes its state to Idle. In response to any other event (Events 9, 11-13, 20, 25-28), the local system: - sends the NOTIFICATION with the Error Code Finite State Machine Error, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. OpenConfirm State: In this state, BGP waits for a KEEPALIVE or NOTIFICATION message. Any start event (Events 1, 3-7) is ignored in the OpenConfirm state. In response to a ManualStop event (Event 2) initiated by the operator, the local system: - sends the NOTIFICATION message with a Cease, - releases all BGP resources, - drops the TCP connection, - sets the ConnectRetryCounter to zero, - sets the ConnectRetryTimer to zero, and - changes its state to Idle. In response to the AutomaticStop event initiated by the system (Event 8), the local system: - sends the NOTIFICATION message with a Cease, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If the HoldTimer_Expires event (Event 10) occurs before a KEEPALIVE message is received, the local system: - sends the NOTIFICATION message with the Error Code Hold Timer Expired, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If the local system receives a KeepaliveTimer_Expires event (Event 11), the local system: - sends a KEEPALIVE message, - restarts the KeepaliveTimer, and - remains in the OpenConfirmed state. In the event of a TcpConnection_Valid event (Event 14), or the success of a TCP connection (Event 16 or Event 17) while in OpenConfirm, the local system needs to track the second connection. If a TCP connection is attempted with an invalid port (Event 15), the local system will ignore the second connection attempt. If the local system receives a TcpConnectionFails event (Event 18) from the underlying TCP or a NOTIFICATION message (Event 25), the local system: - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If the local system receives a NOTIFICATION message with a version error (NotifMsgVerErr (Event 24)), the local system: - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, and - changes its state to Idle. If the local system receives a valid OPEN message (BGPOpen (Event 19)), the collision detect function is processed per Section 6.8. If this connection is to be dropped due to connection collision, the local system: - sends a NOTIFICATION with a Cease, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection (send TCP FIN), - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If an OPEN message is received, all fields are checked for correctness. If the BGP message header checking (BGPHeaderErr (Event 21)) or OPEN message checking detects an error (see Section 6.2) (BGPOpenMsgErr (Event 22)), the local system: - sends a NOTIFICATION message with the appropriate error code, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If, during the processing of another OPEN message, the BGP implementation determines, by a means outside the scope of this document, that a connection collision has occurred and this connection is to be closed, the local system will issue an OpenCollisionDump event (Event 23). When the local system receives an OpenCollisionDump event (Event 23), the local system: - sends a NOTIFICATION with a Cease, - sets the ConnectRetryTimer to zero, - releases all BGP resources - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If the local system receives a KEEPALIVE message (KeepAliveMsg (Event 26)), the local system: - restarts the HoldTimer and - changes its state to Established. In response to any other event (Events 9, 12-13, 20, 27-28), the local system: - sends a NOTIFICATION with a code of Finite State Machine Error, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. Established State: In the Established state, the BGP FSM can exchange UPDATE, NOTIFICATION, and KEEPALIVE messages with its peer. Any Start event (Events 1, 3-7) is ignored in the Established state. In response to a ManualStop event (initiated by an operator) (Event 2), the local system: - sends the NOTIFICATION message with a Cease, - sets the ConnectRetryTimer to zero, - deletes all routes associated with this connection, - releases BGP resources, - drops the TCP connection, - sets the ConnectRetryCounter to zero, and - changes its state to Idle. In response to an AutomaticStop event (Event 8), the local system: - sends a NOTIFICATION with a Cease, - sets the ConnectRetryTimer to zero - deletes all routes associated with this connection, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. One reason for an AutomaticStop event is: A BGP receives an UPDATE messages with a number of prefixes for a given peer such that the total prefixes received exceeds the maximum number of prefixes configured. The local system automatically disconnects the peer. If the HoldTimer_Expires event occurs (Event 10), the local system: - sends a NOTIFICATION message with the Error Code Hold Timer Expired, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. If the KeepaliveTimer_Expires event occurs (Event 11), the local system: - sends a KEEPALIVE message, and - restarts its KeepaliveTimer, unless the negotiated HoldTime value is zero. Each time the local system sends a KEEPALIVE or UPDATE message, it restarts its KeepaliveTimer, unless the negotiated HoldTime value is zero. A TcpConnection_Valid (Event 14), received for a valid port, will cause the second connection to be tracked. An invalid TCP connection (Tcp_CR_Invalid event (Event 15)) will be ignored. In response to an indication that the TCP connection is successfully established (Event 16 or Event 17), the second connection SHALL be tracked until it sends an OPEN message. If a valid OPEN message (BGPOpen (Event 19)) is received, and if the CollisionDetectEstablishedState optional attribute is TRUE, the OPEN message will be checked to see if it collides (Section 6.8) with any other connection. If the BGP implementation determines that this connection needs to be terminated, it will process an OpenCollisionDump event (Event 23). If this connection needs to be terminated, the local system: - sends a NOTIFICATION with a Cease, - sets the ConnectRetryTimer to zero, - deletes all routes associated with this connection, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations is set to TRUE, and - changes its state to Idle. If the local system receives a NOTIFICATION message (Event 24 or Event 25) or a TcpConnectionFails (Event 18) from the underlying TCP, the local system: - sets the ConnectRetryTimer to zero, - deletes all routes associated with this connection, - releases all the BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - changes its state to Idle. If the local system receives a KEEPALIVE message (Event 26), the local system: - restarts its HoldTimer, if the negotiated HoldTime value is non-zero, and - remains in the Established state. If the local system receives an UPDATE message (Event 27), the local system: - processes the message, - restarts its HoldTimer, if the negotiated HoldTime value is non-zero, and - remains in the Established state. If the local system receives an UPDATE message, and the UPDATE message error handling procedure (see Section 6.3) detects an error (Event 28), the local system: - sends a NOTIFICATION message with an Update error, - sets the ConnectRetryTimer to zero, - deletes all routes associated with this connection, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. In response to any other event (Events 9, 12-13, 20-22), the local system: - sends a NOTIFICATION message with the Error Code Finite State Machine Error, - deletes all routes associated with this connection, - sets the ConnectRetryTimer to zero, - releases all BGP resources, - drops the TCP connection, - increments the ConnectRetryCounter by 1, - (optionally) performs peer oscillation damping if the DampPeerOscillations attribute is set to TRUE, and - changes its state to Idle. 9. UPDATE Message Handling An UPDATE message may be received only in the Established state. Receiving an UPDATE message in any other state is an error. When an UPDATE message is received, each field is checked for validity, as specified in Section 6.3. If an optional non-transitive attribute is unrecognized, it is quietly ignored. If an optional transitive attribute is unrecognized, the Partial bit (the third high-order bit) in the attribute flags octet is set to 1, and the attribute is retained for propagation to other BGP speakers. If an optional attribute is recognized and has a valid value, then, depending on the type of the optional attribute, it is processed locally, retained, and updated, if necessary, for possible propagation to other BGP speakers. If the UPDATE message contains a non-empty WITHDRAWN ROUTES field, the previously advertised routes, whose destinations (expressed as IP prefixes) are contained in this field, SHALL be removed from the Adj-RIB-In. This BGP speaker SHALL run its Decision Process because the previously advertised route is no longer available for use. If the UPDATE message contains a feasible route, the Adj-RIB-In will be updated with this route as follows: if the NLRI of the new route is identical to the one the route currently has stored in the Adj- RIB-In, then the new route SHALL replace the older route in the Adj- RIB-In, thus implicitly withdrawing the older route from service. Otherwise, if the Adj-RIB-In has no route with NLRI identical to the new route, the new route SHALL be placed in the Adj-RIB-In. Once the BGP speaker updates the Adj-RIB-In, the speaker SHALL run its Decision Process. 9.1. Decision Process The Decision Process selects routes for subsequent advertisement by applying the policies in the local Policy Information Base (PIB) to the routes stored in its Adj-RIBs-In. The output of the Decision Process is the set of routes that will be advertised to peers; the selected routes will be stored in the local speaker's Adj-RIBs-Out, according to policy. The BGP Decision Process described here is conceptual, and does not have to be implemented precisely as described, as long as the implementations support the described functionality and they exhibit the same externally visible behavior. The selection process is formalized by defining a function that takes the attribute of a given route as an argument and returns either (a) a non-negative integer denoting the degree of preference for the route, or (b) a value denoting that this route is ineligible to be installed in Loc-RIB and will be excluded from the next phase of route selection. The function that calculates the degree of preference for a given route SHALL NOT use any of the following as its inputs: the existence of other routes, the non-existence of other routes, or the path attributes of other routes. Route selection then consists of the individual application of the degree of preference function to each feasible route, followed by the choice of the one with the highest degree of preference. The Decision Process operates on routes contained in the Adj-RIBs-In, and is responsible for: - selection of routes to be used locally by the speaker - selection of routes to be advertised to other BGP peers - route aggregation and route information reduction The Decision Process takes place in three distinct phases, each triggered by a different event: a) Phase 1 is responsible for calculating the degree of preference for each route received from a peer. b) Phase 2 is invoked on completion of phase 1. It is responsible for choosing the best route out of all those available for each distinct destination, and for installing each chosen route into the Loc-RIB. c) Phase 3 is invoked after the Loc-RIB has been modified. It is responsible for disseminating routes in the Loc-RIB to each peer, according to the policies contained in the PIB. Route aggregation and information reduction can optionally be performed within this phase. 9.1.1. Phase 1: Calculation of Degree of Preference The Phase 1 decision function is invoked whenever the local BGP speaker receives, from a peer, an UPDATE message that advertises a new route, a replacement route, or withdrawn routes. The Phase 1 decision function is a separate process,f which completes when it has no further work to do. The Phase 1 decision function locks an Adj-RIB-In prior to operating on any route contained within it, and unlocks it after operating on all new or unfeasible routes contained within it. For each newly received or replacement feasible route, the local BGP speaker determines a degree of preference as follows: If the route is learned from an internal peer, either the value of the LOCAL_PREF attribute is taken as the degree of preference, or the local system computes the degree of preference of the route based on preconfigured policy information. Note that the latter may result in formation of persistent routing loops. If the route is learned from an external peer, then the local BGP speaker computes the degree of preference based on preconfigured policy information. If the return value indicates the route is ineligible, the route MAY NOT serve as an input to the next phase of route selection; otherwise, the return value MUST be used as the LOCAL_PREF value in any IBGP readvertisement. The exact nature of this policy information, and the computation involved, is a local matter. 9.1.2. Phase 2: Route Selection The Phase 2 decision function is invoked on completion of Phase 1. The Phase 2 function is a separate process, which completes when it has no further work to do. The Phase 2 process considers all routes that are eligible in the Adj-RIBs-In. The Phase 2 decision function is blocked from running while the Phase 3 decision function is in process. The Phase 2 function locks all Adj-RIBs-In prior to commencing its function, and unlocks them on completion. If the NEXT_HOP attribute of a BGP route depicts an address that is not resolvable, or if it would become unresolvable if the route was installed in the routing table, the BGP route MUST be excluded from the Phase 2 decision function. If the AS_PATH attribute of a BGP route contains an AS loop, the BGP route should be excluded from the Phase 2 decision function. AS loop detection is done by scanning the full AS path (as specified in the AS_PATH attribute), and checking that the autonomous system number of the local system does not appear in the AS path. Operations of a BGP speaker that is configured to accept routes with its own autonomous system number in the AS path are outside the scope of this document. It is critical that BGP speakers within an AS do not make conflicting decisions regarding route selection that would cause forwarding loops to occur. For each set of destinations for which a feasible route exists in the Adj-RIBs-In, the local BGP speaker identifies the route that has: a) the highest degree of preference of any route to the same set of destinations, or b) is the only route to that destination, or c) is selected as a result of the Phase 2 tie breaking rules specified in Section 9.1.2.2. The local speaker SHALL then install that route in the Loc-RIB, replacing any route to the same destination that is currently being held in the Loc-RIB. When the new BGP route is installed in the Routing Table, care must be taken to ensure that existing routes to the same destination that are now considered invalid are removed from the Routing Table. Whether the new BGP route replaces an existing non-BGP route in the Routing Table depends on the policy configured on the BGP speaker. The local speaker MUST determine the immediate next-hop address from the NEXT_HOP attribute of the selected route (see Section 5.1.3). If either the immediate next-hop or the IGP cost to the NEXT_HOP (where the NEXT_HOP is resolved through an IGP route) changes, Phase 2 Route Selection MUST be performed again. Notice that even though BGP routes do not have to be installed in the Routing Table with the immediate next-hop(s), implementations MUST take care that, before any packets are forwarded along a BGP route, its associated NEXT_HOP address is resolved to the immediate (directly connected) next-hop address, and that this address (or multiple addresses) is finally used for actual packet forwarding. Unresolvable routes SHALL be removed from the Loc-RIB and the routing table. However, corresponding unresolvable routes SHOULD be kept in the Adj-RIBs-In (in case they become resolvable). 9.1.2.1. Route Resolvability Condition As indicated in Section 9.1.2, BGP speakers SHOULD exclude unresolvable routes from the Phase 2 decision. This ensures that only valid routes are installed in Loc-RIB and the Routing Table. The route resolvability condition is defined as follows: 1) A route Rte1, referencing only the intermediate network address, is considered resolvable if the Routing Table contains at least one resolvable route Rte2 that matches Rte1's intermediate network address and is not recursively resolved (directly or indirectly) through Rte1. If multiple matching routes are available, only the longest matching route SHOULD be considered. 2) Routes referencing interfaces (with or without intermediate addresses) are considered resolvable if the state of the referenced interface is up and if IP processing is enabled on this interface. BGP routes do not refer to interfaces, but can be resolved through the routes in the Routing Table that can be of both types (those that specify interfaces or those that do not). IGP routes and routes to directly connected networks are expected to specify the outbound interface. Static routes can specify the outbound interface, the intermediate address, or both. Note that a BGP route is considered unresolvable in a situation where the BGP speaker's Routing Table contains no route matching the BGP route's NEXT_HOP. Mutually recursive routes (routes resolving each other or themselves) also fail the resolvability check. It is also important that implementations do not consider feasible routes that would become unresolvable if they were installed in the Routing Table, even if their NEXT_HOPs are resolvable using the current contents of the Routing Table (an example of such routes would be mutually recursive routes). This check ensures that a BGP speaker does not install routes in the Routing Table that will be removed and not used by the speaker. Therefore, in addition to local Routing Table stability, this check also improves behavior of the protocol in the network. Whenever a BGP speaker identifies a route that fails the resolvability check because of mutual recursion, an error message SHOULD be logged. 9.1.2.2. Breaking Ties (Phase 2) In its Adj-RIBs-In, a BGP speaker may have several routes to the same destination that have the same degree of preference. The local speaker can select only one of these routes for inclusion in the associated Loc-RIB. The local speaker considers all routes with the same degrees of preference, both those received from internal peers, and those received from external peers. The following tie-breaking procedure assumes that, for each candidate route, all the BGP speakers within an autonomous system can ascertain the cost of a path (interior distance) to the address depicted by the NEXT_HOP attribute of the route, and follow the same route selection algorithm. The tie-breaking algorithm begins by considering all equally preferable routes to the same destination, and then selects routes to be removed from consideration. The algorithm terminates as soon as only one route remains in consideration. The criteria MUST be applied in the order specified. Several of the criteria are described using pseudo-code. Note that the pseudo-code shown was chosen for clarity, not efficiency. It is not intended to specify any particular implementation. BGP implementations MAY use any algorithm that produces the same results as those described here. a) Remove from consideration all routes that are not tied for having the smallest number of AS numbers present in their AS_PATH attributes. Note that when counting this number, an AS_SET counts as 1, no matter how many ASes are in the set. b) Remove from consideration all routes that are not tied for having the lowest Origin number in their Origin attribute. c) Remove from consideration routes with less-preferred MULTI_EXIT_DISC attributes. MULTI_EXIT_DISC is only comparable between routes learned from the same neighboring AS (the neighboring AS is determined from the AS_PATH attribute). Routes that do not have the MULTI_EXIT_DISC attribute are considered to have the lowest possible MULTI_EXIT_DISC value. This is also described in the following procedure: for m = all routes still under consideration for n = all routes still under consideration if (neighborAS(m) == neighborAS(n)) and (MED(n) < MED(m)) remove route m from consideration In the pseudo-code above, MED(n) is a function that returns the value of route n's MULTI_EXIT_DISC attribute. If route n has no MULTI_EXIT_DISC attribute, the function returns the lowest possible MULTI_EXIT_DISC value (i.e., 0). Similarly, neighborAS(n) is a function that returns the neighbor AS from which the route was received. If the route is learned via IBGP, and the other IBGP speaker didn't originate the route, it is the neighbor AS from which the other IBGP speaker learned the route. If the route is learned via IBGP, and the other IBGP speaker either (a) originated the route, or (b) created the route by aggregation and the AS_PATH attribute of the aggregate route is either empty or begins with an AS_SET, it is the local AS. If a MULTI_EXIT_DISC attribute is removed before re-advertising a route into IBGP, then comparison based on the received EBGP MULTI_EXIT_DISC attribute MAY still be performed. If an implementation chooses to remove MULTI_EXIT_DISC, then the optional comparison on MULTI_EXIT_DISC, if performed, MUST be performed only among EBGP-learned routes. The best EBGP- learned route may then be compared with IBGP-learned routes after the removal of the MULTI_EXIT_DISC attribute. If MULTI_EXIT_DISC is removed from a subset of EBGP-learned routes, and the selected "best" EBGP-learned route will not have MULTI_EXIT_DISC removed, then the MULTI_EXIT_DISC must be used in the comparison with IBGP-learned routes. For IBGP- learned routes, the MULTI_EXIT_DISC MUST be used in route comparisons that reach this step in the Decision Process. Including the MULTI_EXIT_DISC of an EBGP-learned route in the comparison with an IBGP-learned route, then removing the MULTI_EXIT_DISC attribute, and advertising the route has been proven to cause route loops. d) If at least one of the candidate routes was received via EBGP, remove from consideration all routes that were received via IBGP. e) Remove from consideration any routes with less-preferred interior cost. The interior cost of a route is determined by calculating the metric to the NEXT_HOP for the route using the Routing Table. If the NEXT_HOP hop for a route is reachable, but no cost can be determined, then this step should be skipped (equivalently, consider all routes to have equal costs). This is also described in the following procedure. for m = all routes still under consideration for n = all routes in still under consideration if (cost(n) is lower than cost(m)) remove m from consideration In the pseudo-code above, cost(n) is a function that returns the cost of the path (interior distance) to the address given in the NEXT_HOP attribute of the route. f) Remove from consideration all routes other than the route that was advertised by the BGP speaker with the lowest BGP Identifier value. g) Prefer the route received from the lowest peer address. 9.1.3. Phase 3: Route Dissemination The Phase 3 decision function is invoked on completion of Phase 2, or when any of the following events occur: a) when routes in the Loc-RIB to local destinations have changed b) when locally generated routes learned by means outside of BGP have changed c) when a new BGP speaker connection has been established The Phase 3 function is a separate process that completes when it has no further work to do. The Phase 3 Routing Decision function is blocked from running while the Phase 2 decision function is in process. All routes in the Loc-RIB are processed into Adj-RIBs-Out according to configured policy. This policy MAY exclude a route in the Loc-RIB from being installed in a particular Adj-RIB-Out. A route SHALL NOT be installed in the Adj-Rib-Out unless the destination, and NEXT_HOP described by this route, may be forwarded appropriately by the Routing Table. If a route in Loc-RIB is excluded from a particular Adj-RIB-Out, the previously advertised route in that Adj-RIB-Out MUST be withdrawn from service by means of an UPDATE message (see 9.2). Route aggregation and information reduction techniques (see Section 9.2.2.1) may optionally be applied. Any local policy that results in routes being added to an Adj-RIB-Out without also being added to the local BGP speaker's forwarding table is outside the scope of this document. When the updating of the Adj-RIBs-Out and the Routing Table is complete, the local BGP speaker runs the Update-Send process of 9.2. 9.1.4. Overlapping Routes A BGP speaker may transmit routes with overlapping Network Layer Reachability Information (NLRI) to another BGP speaker. NLRI overlap occurs when a set of destinations are identified in non-matching multiple routes. Because BGP encodes NLRI using IP prefixes, overlap will always exhibit subset relationships. A route describing a smaller set of destinations (a longer prefix) is said to be more specific than a route describing a larger set of destinations (a shorter prefix); similarly, a route describing a larger set of destinations is said to be less specific than a route describing a smaller set of destinations. The precedence relationship effectively decomposes less specific routes into two parts: - a set of destinations described only by the less specific route, and - a set of destinations described by the overlap of the less specific and the more specific routes The set of destinations described by the overlap represents a portion of the less specific route that is feasible, but is not currently in use. If a more specific route is later withdrawn, the set of destinations described by the overlap will still be reachable using the less specific route. If a BGP speaker receives overlapping routes, the Decision Process MUST consider both routes based on the configured acceptance policy. If both a less and a more specific route are accepted, then the Decision Process MUST install, in Loc-RIB, either both the less and the more specific routes or aggregate the two routes and install, in Loc-RIB, the aggregated route, provided that both routes have the same value of the NEXT_HOP attribute. If a BGP speaker chooses to aggregate, then it SHOULD either include all ASes used to form the aggregate in an AS_SET, or add the ATOMIC_AGGREGATE attribute to the route. This attribute is now primarily informational. With the elimination of IP routing protocols that do not support classless routing, and the elimination of router and host implementations that do not support classless routing, there is no longer a need to de-aggregate. Routes SHOULD NOT be de-aggregated. In particular, a route that carries the ATOMIC_AGGREGATE attribute MUST NOT be de-aggregated. That is, the NLRI of this route cannot be more specific. Forwarding along such a route does not guarantee that IP packets will actually traverse only ASes listed in the AS_PATH attribute of the route. 9.2. Update-Send Process The Update-Send process is responsible for advertising UPDATE messages to all peers. For example, it distributes the routes chosen by the Decision Process to other BGP speakers, which may be located in either the same autonomous system or a neighboring autonomous system. When a BGP speaker receives an UPDATE message from an internal peer, the receiving BGP speaker SHALL NOT re-distribute the routing information contained in that UPDATE message to other internal peers (unless the speaker acts as a BGP Route Reflector [RFC2796]). As part of Phase 3 of the route selection process, the BGP speaker has updated its Adj-RIBs-Out. All newly installed routes and all newly unfeasible routes for which there is no replacement route SHALL be advertised to its peers by means of an UPDATE message. A BGP speaker SHOULD NOT advertise a given feasible BGP route from its Adj-RIB-Out if it would produce an UPDATE message containing the same BGP route as was previously advertised. Any routes in the Loc-RIB marked as unfeasible SHALL be removed. Changes to the reachable destinations within its own autonomous system SHALL also be advertised in an UPDATE message. If, due to the limits on the maximum size of an UPDATE message (see Section 4), a single route doesn't fit into the message, the BGP speaker MUST not advertise the route to its peers and MAY choose to log an error locally. 9.2.1. Controlling Routing Traffic Overhead The BGP protocol constrains the amount of routing traffic (that is, UPDATE messages), in order to limit both the link bandwidth needed to advertise UPDATE messages and the processing power needed by the Decision Process to digest the information contained in the UPDATE messages. 9.2.1.1. Frequency of Route Advertisement The parameter MinRouteAdvertisementIntervalTimer determines the minimum amount of time that must elapse between an advertisement and/or withdrawal of routes to a particular destination by a BGP speaker to a peer. This rate limiting procedure applies on a per- destination basis, although the value of MinRouteAdvertisementIntervalTimer is set on a per BGP peer basis. Two UPDATE messages sent by a BGP speaker to a peer that advertise feasible routes and/or withdrawal of unfeasible routes to some common set of destinations MUST be separated by at least MinRouteAdvertisementIntervalTimer. This can only be achieved by keeping a separate timer for each common set of destinations. This would be unwarranted overhead. Any technique that ensures that the interval between two UPDATE messages sent from a BGP speaker to a peer that advertise feasible routes and/or withdrawal of unfeasible routes to some common set of destinations will be at least MinRouteAdvertisementIntervalTimer, and will also ensure that a constant upper bound on the interval is acceptable. Since fast convergence is needed within an autonomous system, either (a) the MinRouteAdvertisementIntervalTimer used for internal peers SHOULD be shorter than the MinRouteAdvertisementIntervalTimer used for external peers, or (b) the procedure describe in this section SHOULD NOT apply to routes sent to internal peers. This procedure does not limit the rate of route selection, but only the rate of route advertisement. If new routes are selected multiple times while awaiting the expiration of MinRouteAdvertisementIntervalTimer, the last route selected SHALL be advertised at the end of MinRouteAdvertisementIntervalTimer. 9.2.1.2. Frequency of Route Origination The parameter MinASOriginationIntervalTimer determines the minimum amount of time that must elapse between successive advertisements of UPDATE messages that report changes within the advertising BGP speaker's own autonomous systems. 9.2.2. Efficient Organization of Routing Information Having selected the routing information it will advertise, a BGP speaker may avail itself of several methods to organize this information in an efficient manner. 9.2.2.1. Information Reduction Information reduction may imply a reduction in granularity of policy control - after information is collapsed, the same policies will apply to all destinations and paths in the equivalence class. The Decision Process may optionally reduce the amount of information that it will place in the Adj-RIBs-Out by any of the following methods: a) Network Layer Reachability Information (NLRI): Destination IP addresses can be represented as IP address prefixes. In cases where there is a correspondence between the address structure and the systems under control of an autonomous system administrator, it will be possible to reduce the size of the NLRI carried in the UPDATE messages. b) AS_PATHs: AS path information can be represented as ordered AS_SEQUENCEs or unordered AS_SETs. AS_SETs are used in the route aggregation algorithm described in Section 9.2.2.2. They reduce the size of the AS_PATH information by listing each AS number only once, regardless of how many times it may have appeared in multiple AS_PATHs that were aggregated. An AS_SET implies that the destinations listed in the NLRI can be reached through paths that traverse at least some of the constituent autonomous systems. AS_SETs provide sufficient information to avoid routing information looping; however, their use may prune potentially feasible paths because such paths are no longer listed individually in the form of AS_SEQUENCEs. In practice, this is not likely to be a problem because once an IP packet arrives at the edge of a group of autonomous systems, the BGP speaker is likely to have more detailed path information and can distinguish individual paths from destinations. 9.2.2.2. Aggregating Routing Information Aggregation is the process of combining the characteristics of several different routes in such a way that a single route can be advertised. Aggregation can occur as part of the Decision Process to reduce the amount of routing information that will be placed in the Adj-RIBs-Out. Aggregation reduces the amount of information that a BGP speaker must store and exchange with other BGP speakers. Routes can be aggregated by applying the following procedure, separately, to path attributes of the same type and to the Network Layer Reachability Information. Routes that have different MULTI_EXIT_DISC attributes SHALL NOT be aggregated. If the aggregated route has an AS_SET as the first element in its AS_PATH attribute, then the router that originates the route SHOULD NOT advertise the MULTI_EXIT_DISC attribute with this route. Path attributes that have different type codes cannot be aggregated together. Path attributes of the same type code may be aggregated, according to the following rules: NEXT_HOP: When aggregating routes that have different NEXT_HOP attributes, the NEXT_HOP attribute of the aggregated route SHALL identify an interface on the BGP speaker that performs the aggregation. ORIGIN attribute: If at least one route among routes that are aggregated has ORIGIN with the value INCOMPLETE, then the aggregated route MUST have the ORIGIN attribute with the value INCOMPLETE. Otherwise, if at least one route among routes that are aggregated has ORIGIN with the value EGP, then the aggregated route MUST have the ORIGIN attribute with the value EGP. In all other cases, the value of the ORIGIN attribute of the aggregated route is IGP.
EID 5369 (Verified) is as follows:

Section: 9.2.2.2

Original Text:

         route MUST have the ORIGIN attribute with the value EGP.  In
         all other cases,, the value of the ORIGIN attribute of the
         aggregated route is IGP.

Corrected Text:

         route MUST have the ORIGIN attribute with the value EGP.  In
         all other cases, the value of the ORIGIN attribute of the
         aggregated route is IGP.
Notes:
Extra comma after 'cases'.
AS_PATH attribute: If routes to be aggregated have identical AS_PATH attributes, then the aggregated route has the same AS_PATH attribute as each individual route. For the purpose of aggregating AS_PATH attributes, we model each AS within the AS_PATH attribute as a tuple <type, value>, where "type" identifies a type of the path segment the AS belongs to (e.g., AS_SEQUENCE, AS_SET), and "value" identifies the AS number. If the routes to be aggregated have different AS_PATH attributes, then the aggregated AS_PATH attribute SHALL satisfy all of the following conditions: - all tuples of type AS_SEQUENCE in the aggregated AS_PATH SHALL appear in all of the AS_PATHs in the initial set of routes to be aggregated. - all tuples of type AS_SET in the aggregated AS_PATH SHALL appear in at least one of the AS_PATHs in the initial set (they may appear as either AS_SET or AS_SEQUENCE types). - for any tuple X of type AS_SEQUENCE in the aggregated AS_PATH, which precedes tuple Y in the aggregated AS_PATH, X precedes Y in each AS_PATH in the initial set, which contains Y, regardless of the type of Y. - No tuple of type AS_SET with the same value SHALL appear more than once in the aggregated AS_PATH. - Multiple tuples of type AS_SEQUENCE with the same value may appear in the aggregated AS_PATH only when adjacent to another tuple of the same type and value. An implementation may choose any algorithm that conforms to these rules. At a minimum, a conformant implementation SHALL be able to perform the following algorithm that meets all of the above conditions: - determine the longest leading sequence of tuples (as defined above) common to all the AS_PATH attributes of the routes to be aggregated. Make this sequence the leading sequence of the aggregated AS_PATH attribute. - set the type of the rest of the tuples from the AS_PATH attributes of the routes to be aggregated to AS_SET, and append them to the aggregated AS_PATH attribute. - if the aggregated AS_PATH has more than one tuple with the same value (regardless of tuple's type), eliminate all but one such tuple by deleting tuples of the type AS_SET from the aggregated AS_PATH attribute. - for each pair of adjacent tuples in the aggregated AS_PATH, if both tuples have the same type, merge them together, as long as doing so will not cause a segment with a length greater than 255 to be generated. Appendix F, Section F.6 presents another algorithm that satisfies the conditions and allows for more complex policy configurations. ATOMIC_AGGREGATE: If at least one of the routes to be aggregated has ATOMIC_AGGREGATE path attribute, then the aggregated route SHALL have this attribute as well. AGGREGATOR: Any AGGREGATOR attributes from the routes to be aggregated MUST NOT be included in the aggregated route. The BGP speaker performing the route aggregation MAY attach a new AGGREGATOR attribute (see Section 5.1.7). 9.3. Route Selection Criteria Generally, additional rules for comparing routes among several alternatives are outside the scope of this document. There are two exceptions: - If the local AS appears in the AS path of the new route being considered, then that new route cannot be viewed as better than any other route (provided that the speaker is configured to accept such routes). If such a route were ever used, a routing loop could result. - In order to achieve a successful distributed operation, only routes with a likelihood of stability can be chosen. Thus, an AS SHOULD avoid using unstable routes, and it SHOULD NOT make rapid, spontaneous changes to its choice of route. Quantifying the terms "unstable" and "rapid" (from the previous sentence) will require experience, but the principle is clear. Routes that are unstable can be "penalized" (e.g., by using the procedures described in [RFC2439]). 9.4. Originating BGP routes A BGP speaker may originate BGP routes by injecting routing information acquired by some other means (e.g., via an IGP) into BGP. A BGP speaker that originates BGP routes assigns the degree of preference (e.g., according to local configuration) to these routes by passing them through the Decision Process (see Section 9.1). These routes MAY also be distributed to other BGP speakers within the local AS as part of the update process (see Section 9.2). The decision of whether to distribute non-BGP acquired routes within an AS via BGP depends on the environment within the AS (e.g., type of IGP) and SHOULD be controlled via configuration. 10. BGP Timers BGP employs five timers: ConnectRetryTimer (see Section 8), HoldTimer (see Section 4.2), KeepaliveTimer (see Section 8), MinASOriginationIntervalTimer (see Section 9.2.1.2), and MinRouteAdvertisementIntervalTimer (see Section 9.2.1.1). Two optional timers MAY be supported: DelayOpenTimer, IdleHoldTimer by BGP (see Section 8). Section 8 describes their use. The full operation of these optional timers is outside the scope of this document. ConnectRetryTime is a mandatory FSM attribute that stores the initial value for the ConnectRetryTimer. The suggested default value for the ConnectRetryTime is 120 seconds. HoldTime is a mandatory FSM attribute that stores the initial value for the HoldTimer. The suggested default value for the HoldTime is 90 seconds. During some portions of the state machine (see Section 8), the HoldTimer is set to a large value. The suggested default for this large value is 4 minutes. The KeepaliveTime is a mandatory FSM attribute that stores the initial value for the KeepaliveTimer. The suggested default value for the KeepaliveTime is 1/3 of the HoldTime. The suggested default value for the MinASOriginationIntervalTimer is 15 seconds. The suggested default value for the MinRouteAdvertisementIntervalTimer on EBGP connections is 30 seconds. The suggested default value for the MinRouteAdvertisementIntervalTimer on IBGP connections is 5 seconds. An implementation of BGP MUST allow the HoldTimer to be configurable on a per-peer basis, and MAY allow the other timers to be configurable. To minimize the likelihood that the distribution of BGP messages by a given BGP speaker will contain peaks, jitter SHOULD be applied to the timers associated with MinASOriginationIntervalTimer, KeepaliveTimer, MinRouteAdvertisementIntervalTimer, and ConnectRetryTimer. A given BGP speaker MAY apply the same jitter to each of these quantities, regardless of the destinations to which the updates are being sent; that is, jitter need not be configured on a per-peer basis. The suggested default amount of jitter SHALL be determined by multiplying the base value of the appropriate timer by a random factor, which is uniformly distributed in the range from 0.75 to 1.0. A new random value SHOULD be picked each time the timer is set. The range of the jitter's random value MAY be configurable. Appendix A. Comparison with RFC 1771 There are numerous editorial changes in comparison to [RFC1771] (too many to list here). The following list the technical changes: Changes to reflect the usage of features such as TCP MD5 [RFC2385], BGP Route Reflectors [RFC2796], BGP Confederations [RFC3065], and BGP Route Refresh [RFC2918]. Clarification of the use of the BGP Identifier in the AGGREGATOR attribute. Procedures for imposing an upper bound on the number of prefixes that a BGP speaker would accept from a peer. The ability of a BGP speaker to include more than one instance of its own AS in the AS_PATH attribute for the purpose of inter-AS traffic engineering. Clarification of the various types of NEXT_HOPs. Clarification of the use of the ATOMIC_AGGREGATE attribute. The relationship between the immediate next hop, and the next hop as specified in the NEXT_HOP path attribute. Clarification of the tie-breaking procedures. Clarification of the frequency of route advertisements. Optional Parameter Type 1 (Authentication Information) has been deprecated. UPDATE Message Error subcode 7 (AS Routing Loop) has been deprecated. OPEN Message Error subcode 5 (Authentication Failure) has been deprecated. Use of the Marker field for authentication has been deprecated. Implementations MUST support TCP MD5 [RFC2385] for authentication. Clarification of BGP FSM. Appendix B. Comparison with RFC 1267 All the changes listed in Appendix A, plus the following. BGP-4 is capable of operating in an environment where a set of reachable destinations may be expressed via a single IP prefix. The concept of network classes, or subnetting, is foreign to BGP-4. To accommodate these capabilities, BGP-4 changes the semantics and encoding associated with the AS_PATH attribute. New text has been added to define semantics associated with IP prefixes. These abilities allow BGP-4 to support the proposed supernetting scheme [RFC1518, RFC1519]. To simplify configuration, this version introduces a new attribute, LOCAL_PREF, that facilitates route selection procedures. The INTER_AS_METRIC attribute has been renamed MULTI_EXIT_DISC. A new attribute, ATOMIC_AGGREGATE, has been introduced to insure that certain aggregates are not de-aggregated. Another new attribute, AGGREGATOR, can be added to aggregate routes to advertise which AS and which BGP speaker within that AS caused the aggregation. To ensure that Hold Timers are symmetric, the Hold Timer is now negotiated on a per-connection basis. Hold Timers of zero are now supported. Appendix C. Comparison with RFC 1163 All of the changes listed in Appendices A and B, plus the following. To detect and recover from BGP connection collision, a new field (BGP Identifier) has been added to the OPEN message. New text (Section 6.8) has been added to specify the procedure for detecting and recovering from collision. The new document no longer restricts the router that is passed in the NEXT_HOP path attribute to be part of the same Autonomous System as the BGP Speaker. The new document optimizes and simplifies the exchange of information about previously reachable routes. Appendix D. Comparison with RFC 1105 All of the changes listed in Appendices A, B, and C, plus the following. Minor changes to the [RFC1105] Finite State Machine were necessary to accommodate the TCP user interface provided by BSD version 4.3. The notion of Up/Down/Horizontal relations presented in RFC 1105 has been removed from the protocol. The changes in the message format from RFC 1105 are as follows: 1. The Hold Time field has been removed from the BGP header and added to the OPEN message. 2. The version field has been removed from the BGP header and added to the OPEN message. 3. The Link Type field has been removed from the OPEN message. 4. The OPEN CONFIRM message has been eliminated and replaced with implicit confirmation, provided by the KEEPALIVE message. 5. The format of the UPDATE message has been changed significantly. New fields were added to the UPDATE message to support multiple path attributes. 6. The Marker field has been expanded and its role broadened to support authentication. Note that quite often BGP, as specified in RFC 1105, is referred to as BGP-1; BGP, as specified in [RFC1163], is referred to as BGP-2; BGP, as specified in RFC 1267 is referred to as BGP-3; and BGP, as specified in this document is referred to as BGP-4. Appendix E. TCP Options that May Be Used with BGP If a local system TCP user interface supports the TCP PUSH function, then each BGP message SHOULD be transmitted with PUSH flag set. Setting PUSH flag forces BGP messages to be transmitted to the receiver promptly. If a local system TCP user interface supports setting the DSCP field [RFC2474] for TCP connections, then the TCP connection used by BGP SHOULD be opened with bits 0-2 of the DSCP field set to 110 (binary). An implementation MUST support the TCP MD5 option [RFC2385]. Appendix F. Implementation Recommendations This section presents some implementation recommendations. Appendix F.1. Multiple Networks Per Message The BGP protocol allows for multiple address prefixes with the same path attributes to be specified in one message. Using this capability is highly recommended. With one address prefix per message there is a substantial increase in overhead in the receiver. Not only does the system overhead increase due to the reception of multiple messages, but the overhead of scanning the routing table for updates to BGP peers and other routing protocols (and sending the associated messages) is incurred multiple times as well. One method of building messages that contain many address prefixes per path attribute set from a routing table that is not organized on a per path attribute set basis is to build many messages as the routing table is scanned. As each address prefix is processed, a message for the associated set of path attributes is allocated, if it does not exist, and the new address prefix is added to it. If such a message exists, the new address prefix is appended to it. If the message lacks the space to hold the new address prefix, it is transmitted, a new message is allocated, and the new address prefix is inserted into the new message. When the entire routing table has been scanned, all allocated messages are sent and their resources are released. Maximum compression is achieved when all destinations covered by the address prefixes share a common set of path attributes, making it possible to send many address prefixes in one 4096-byte message. When peering with a BGP implementation that does not compress multiple address prefixes into one message, it may be necessary to take steps to reduce the overhead from the flood of data received when a peer is acquired or when a significant network topology change occurs. One method of doing this is to limit the rate of updates. This will eliminate the redundant scanning of the routing table to provide flash updates for BGP peers and other routing protocols. A disadvantage of this approach is that it increases the propagation latency of routing information. By choosing a minimum flash update interval that is not much greater than the time it takes to process the multiple messages, this latency should be minimized. A better method would be to read all received messages before sending updates. Appendix F.2. Reducing Route Flapping To avoid excessive route flapping, a BGP speaker that needs to withdraw a destination and send an update about a more specific or less specific route should combine them into the same UPDATE message. Appendix F.3. Path Attribute Ordering Implementations that combine update messages (as described above in Section 6.1) may prefer to see all path attributes presented in a known order. This permits them to quickly identify sets of attributes from different update messages that are semantically identical. To facilitate this, it is a useful optimization to order the path attributes according to type code. This optimization is entirely optional. Appendix F.4. AS_SET Sorting Another useful optimization that can be done to simplify this situation is to sort the AS numbers found in an AS_SET. This optimization is entirely optional. Appendix F.5. Control Over Version Negotiation Because BGP-4 is capable of carrying aggregated routes that cannot be properly represented in BGP-3, an implementation that supports BGP-4 and another BGP version should provide the capability to only speak BGP-4 on a per-peer basis. Appendix F.6. Complex AS_PATH Aggregation An implementation that chooses to provide a path aggregation algorithm retaining significant amounts of path information may wish to use the following procedure: For the purpose of aggregating AS_PATH attributes of two routes, we model each AS as a tuple <type, value>, where "type" identifies a type of the path segment the AS belongs to (e.g., AS_SEQUENCE, AS_SET), and "value" is the AS number. Two ASes are said to be the same if their corresponding <type, value> tuples are the same. The algorithm to aggregate two AS_PATH attributes works as follows: a) Identify the same ASes (as defined above) within each AS_PATH attribute that are in the same relative order within both AS_PATH attributes. Two ASes, X and Y, are said to be in the same order if either: - X precedes Y in both AS_PATH attributes, or - Y precedes X in both AS_PATH attributes. b) The aggregated AS_PATH attribute consists of ASes identified in (a), in exactly the same order as they appear in the AS_PATH attributes to be aggregated. If two consecutive ASes identified in (a) do not immediately follow each other in both of the AS_PATH attributes to be aggregated, then the intervening ASes (ASes that are between the two consecutive ASes that are the same) in both attributes are combined into an AS_SET path segment that consists of the intervening ASes from both AS_PATH attributes. This segment is then placed between the two consecutive ASes identified in (a) of the aggregated attribute. If two consecutive ASes identified in (a) immediately follow each other in one attribute, but do not follow in another, then the intervening ASes of the latter are combined into an AS_SET path segment. This segment is then placed between the two consecutive ASes identified in (a) of the aggregated attribute. c) For each pair of adjacent tuples in the aggregated AS_PATH, if both tuples have the same type, merge them together if doing so will not cause a segment of a length greater than 255 to be generated. If, as a result of the above procedure, a given AS number appears more than once within the aggregated AS_PATH attribute, all but the last instance (rightmost occurrence) of that AS number should be removed from the aggregated AS_PATH attribute. Security Considerations A BGP implementation MUST support the authentication mechanism specified in RFC 2385 [RFC2385]. The authentication provided by this mechanism could be done on a per-peer basis. BGP makes use of TCP for reliable transport of its traffic between peer routers. To provide connection-oriented integrity and data origin authentication on a point-to-point basis, BGP specifies use of the mechanism defined in RFC 2385. These services are intended to detect and reject active wiretapping attacks against the inter-router TCP connections. Absent the use of mechanisms that effect these security services, attackers can disrupt these TCP connections and/or masquerade as a legitimate peer router. Because the mechanism defined in the RFC does not provide peer-entity authentication, these connections may be subject to some forms of replay attacks that will not be detected at the TCP layer. Such attacks might result in delivery (from TCP) of "broken" or "spoofed" BGP messages. The mechanism defined in RFC 2385 augments the normal TCP checksum with a 16-byte message authentication code (MAC) that is computed over the same data as the TCP checksum. This MAC is based on a one- way hash function (MD5) and use of a secret key. The key is shared between peer routers and is used to generate MAC values that are not readily computed by an attacker who does not have access to the key. A compliant implementation must support this mechanism, and must allow a network administrator to activate it on a per-peer basis. RFC 2385 does not specify a means of managing (e.g., generating, distributing, and replacing) the keys used to compute the MAC. RFC 3562 [RFC3562] (an informational document) provides some guidance in this area, and provides rationale to support this guidance. It notes that a distinct key should be used for communication with each protected peer. If the same key is used for multiple peers, the offered security services may be degraded, e.g., due to an increased risk of compromise at one router that adversely affects other routers. The keys used for MAC computation should be changed periodically, to minimize the impact of a key compromise or successful cryptanalytic attack. RFC 3562 suggests a crypto period (the interval during which a key is employed) of, at most, 90 days. More frequent key changes reduce the likelihood that replay attacks (as described above) will be feasible. However, absent a standard mechanism for effecting such changes in a coordinated fashion between peers, one cannot assume that BGP-4 implementations complying with this RFC will support frequent key changes. Obviously, each should key also be chosen to be difficult for an attacker to guess. The techniques specified in RFC 1750 for random number generation provide a guide for generation of values that could be used as keys. RFC 2385 calls for implementations to support keys "composed of a string of printable ASCII of 80 bytes or less." RFC 3562 suggests keys used in this context be 12 to 24 bytes of random (pseudo-random) bits. This is fairly consistent with suggestions for analogous MAC algorithms, which typically employ keys in the range of 16 to 20 bytes. To provide enough random bits at the low end of this range, RFC 3562 also observes that a typical ACSII text string would have to be close to the upper bound for the key length specified in RFC 2385. BGP vulnerabilities analysis is discussed in [RFC4272]. IANA Considerations All the BGP messages contain an 8-bit message type, for which IANA has created and is maintaining a registry entitled "BGP Message Types". This document defines the following message types: Name Value Definition ---- ----- ---------- OPEN 1 See Section 4.2 UPDATE 2 See Section 4.3 NOTIFICATION 3 See Section 4.5 KEEPALIVE 4 See Section 4.4 Future assignments are to be made using either the Standards Action process defined in [RFC2434], or the Early IANA Allocation process defined in [RFC4020]. Assignments consist of a name and the value. The BGP UPDATE messages may carry one or more Path Attributes, where each Attribute contains an 8-bit Attribute Type Code. IANA is already maintaining such a registry, entitled "BGP Path Attributes". This document defines the following Path Attributes Type Codes: Name Value Definition ---- ----- ---------- ORIGIN 1 See Section 5.1.1 AS_PATH 2 See Section 5.1.2 NEXT_HOP 3 See Section 5.1.3 MULTI_EXIT_DISC 4 See Section 5.1.4 LOCAL_PREF 5 See Section 5.1.5 ATOMIC_AGGREGATE 6 See Section 5.1.6 AGGREGATOR 7 See Section 5.1.7 Future assignments are to be made using either the Standards Action process defined in [RFC2434], or the Early IANA Allocation process defined in [RFC4020]. Assignments consist of a name and the value. The BGP NOTIFICATION message carries an 8-bit Error Code, for which IANA has created and is maintaining a registry entitled "BGP Error Codes". This document defines the following Error Codes: Name Value Definition ------------ ----- ---------- Message Header Error 1 Section 6.1 OPEN Message Error 2 Section 6.2 UPDATE Message Error 3 Section 6.3 Hold Timer Expired 4 Section 6.5 Finite State Machine Error 5 Section 6.6 Cease 6 Section 6.7 Future assignments are to be made using either the Standards Action process defined in [RFC2434], or the Early IANA Allocation process defined in [RFC4020]. Assignments consist of a name and the value. The BGP NOTIFICATION message carries an 8-bit Error Subcode, where each Subcode has to be defined within the context of a particular Error Code, and thus has to be unique only within that context. IANA has created and is maintaining a set of registries, "Error Subcodes", with a separate registry for each BGP Error Code. Future assignments are to be made using either the Standards Action process defined in [RFC2434], or the Early IANA Allocation process defined in [RFC4020]. Assignments consist of a name and the value. This document defines the following Message Header Error subcodes: Name Value Definition -------------------- ----- ---------- Connection Not Synchronized 1 See Section 6.1 Bad Message Length 2 See Section 6.1 Bad Message Type 3 See Section 6.1 This document defines the following OPEN Message Error subcodes: Name Value Definition -------------------- ----- ---------- Unsupported Version Number 1 See Section 6.2 Bad Peer AS 2 See Section 6.2 Bad BGP Identifier 3 See Section 6.2 Unsupported Optional Parameter 4 See Section 6.2 [Deprecated] 5 See Appendix A Unacceptable Hold Time 6 See Section 6.2 This document defines the following UPDATE Message Error subcodes: Name Value Definition -------------------- --- ---------- Malformed Attribute List 1 See Section 6.3 Unrecognized Well-known Attribute 2 See Section 6.3 Missing Well-known Attribute 3 See Section 6.3 Attribute Flags Error 4 See Section 6.3 Attribute Length Error 5 See Section 6.3 Invalid ORIGIN Attribute 6 See Section 6.3 [Deprecated] 7 See Appendix A Invalid NEXT_HOP Attribute 8 See Section 6.3 Optional Attribute Error 9 See Section 6.3 Invalid Network Field 10 See Section 6.3 Malformed AS_PATH 11 See Section 6.3 Normative References [RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981. [RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5 Signature Option", RFC 2385, August 1998. [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998. Informative References [RFC904] Mills, D., "Exterior Gateway Protocol formal specification", RFC 904, April 1984. [RFC1092] Rekhter, J., "EGP and policy based routing in the new NSFNET backbone", RFC 1092, February 1989. [RFC1093] Braun, H., "NSFNET routing architecture", RFC 1093, February 1989. [RFC1105] Lougheed, K. and Y. Rekhter, "Border Gateway Protocol (BGP)", RFC 1105, June 1989. [RFC1163] Lougheed, K. and Y. Rekhter, "Border Gateway Protocol (BGP)", RFC 1163, June 1990. [RFC1267] Lougheed, K. and Y. Rekhter, "Border Gateway Protocol 3 (BGP-3)", RFC 1267, October 1991. [RFC1771] Rekhter, Y. and T. Li, "A Border Gateway Protocol 4 (BGP- 4)", RFC 1771, March 1995. [RFC1772] Rekhter, Y. and P. Gross, "Application of the Border Gateway Protocol in the Internet", RFC 1772, March 1995. [RFC1518] Rekhter, Y. and T. Li, "An Architecture for IP Address Allocation with CIDR", RFC 1518, September 1993. [RFC1519] Fuller, V., Li, T., Yu, J., and K. Varadhan, "Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy", RFC 1519, September 1993. [RFC1930] Hawkinson, J. and T. Bates, "Guidelines for creation, selection, and registration of an Autonomous System (AS)", BCP 6, RFC 1930, March 1996. [RFC1997] Chandra, R., Traina, P., and T. Li, "BGP Communities Attribute", RFC 1997, August 1996. [RFC2439] Villamizar, C., Chandra, R., and R. Govindan, "BGP Route Flap Damping", RFC 2439, November 1998. [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, December 1998. [RFC2796] Bates, T., Chandra, R., and E. Chen, "BGP Route Reflection - An Alternative to Full Mesh IBGP", RFC 2796, April 2000. [RFC2858] Bates, T., Rekhter, Y., Chandra, R., and D. Katz, "Multiprotocol Extensions for BGP-4", RFC 2858, June 2000. [RFC3392] Chandra, R. and J. Scudder, "Capabilities Advertisement with BGP-4", RFC 3392, November 2002. [RFC2918] Chen, E., "Route Refresh Capability for BGP-4", RFC 2918, September 2000. [RFC3065] Traina, P., McPherson, D., and J. Scudder, "Autonomous System Confederations for BGP", RFC 3065, February 2001. [RFC3562] Leech, M., "Key Management Considerations for the TCP MD5 Signature Option", RFC 3562, July 2003. [IS10747] "Information Processing Systems - Telecommunications and Information Exchange between Systems - Protocol for Exchange of Inter-domain Routeing Information among Intermediate Systems to Support Forwarding of ISO 8473 PDUs", ISO/IEC IS10747, 1993. [RFC4272] Murphy, S., "BGP Security Vulnerabilities Analysis", RFC 4272, January 2006 [RFC4020] Kompella, K. and A. Zinin, "Early IANA Allocation of Standards Track Code Points", BCP 100, RFC 4020, February 2005. Editors' Addresses Yakov Rekhter Juniper Networks EMail: [email protected] Tony Li EMail: [email protected] Susan Hares NextHop Technologies, Inc. 825 Victors Way Ann Arbor, MI 48108 Phone: (734)222-1610 EMail: [email protected] Full Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at [email protected]. Acknowledgement Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).